摘要
配电网重构可以提高配电网运行的经济性和安全性,而分布式电源(Distributed Generator,DG)加入配电网直接影响潮流分布,对配电网重构将产生较大影响。考虑到DG对配电网重构的影响,以开关状态、DG出力为优化变量,建立了以网络损耗、负荷均衡化率最小为目标函数的多目标优化模型。将生成树、蚁群算法和遗传算法相结合,提出了求解上述模型的多目标混合优化方法,以实现配电网结构和DG出力的协同优化。该方法利用基于生成树原理的蚁群算法对配电网结构进行优化,保证蚂蚁路径满足网络拓扑约束,有效提高了可行解的数量;采用Pareto最优遗传算法对分布式电源出力进行优化,可获得满足多目标需求的若干优化方案。仿真结果表明所提出方法能够实现DG出力和网络重构的综合优化和多目标优化。
Distribution network reconfiguration can improve the operation economy and safety of the network, while distributed generation injected to distributed network directly affects flow distribution and has a greater impact on network reconfiguration. Considering the impact of distributed generation on network reconfiguration, this paper makes switch status and DG output as the optimization variables, and establishes a multi-objective optimization model which takes network loss and load balancing rate as the objective functions. The paper puts forward a multi-objective mixed optimization method combining spanning tree and ant colony algorithm with genetic algorithm, which realizes the collaborative optimization of distributed network structure and DG output. This method uses ant colony algorithm based on spanning tree to reconstruct the distribution network in order to guarantee the network topology constraint, and uses genetic algorithm based on Pareto dominance to optimize the output of DG output. Simulation results show that the proposed method can complete integrated optimization of network reconfiguration and optimal output of DG and achieve multi-objective optimization.
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2012年第18期117-122,共6页
Power System Protection and Control
基金
国家科技支撑计划项目(2006BAJ04B06)
关键词
配电网重构
分布式电源
多目标优化
蚁群算法
遗传算法
distribution network reconfiguration
distributed generation
multi-objective optimization
ant colony algorithm
geneticalgorithm