期刊文献+

BP人工神经网络在鱼糜挤压制品生产中的应用 被引量:2

Application of BP artificial neural network in extruded surimi product
原文传递
导出
摘要 采用反向传播(BP)人工神经网络和响应面法(RSM)模拟操作工艺参数(鱼糜含量、螺杆转速、III区加热温度)对双螺杆挤压机生产的鱼糜挤压制品的品质属性(持水性、膨润度、硬度和弹性)的影响,并比较了BP人工神经网络和RSM所建立的操作工艺参数与产品属性间关系模型的预测误差。试验结果表明,经训练的BP人工神经网络的模拟值和实际值的均方差(MSE)及和方差(SSE)均比RSM低,在模拟产品属性上具有更好的拟合度和准确性,采用此法确定的鱼糜挤压制品最佳工艺参数为:鱼糜含量45.70%,螺杆转速170r/min,III区温度106.2℃。 A back propagation (BP) artificial neural network (ANN) model was developed to predict the properties of extruded surimi products produced by a twin screw extruder. A BP-ANN model was established in MATLAB to simulate the relationships between running parameters of contents of surimi, screw speed and heating temperature of barrel III with the properties of surimi products such as water holding capability (WHC), swelling degree (SD), hardness (H) and springiness (S) during extrusion process. Using the experimental data from a quadratic general rotary unitized design, the neural network was trained and then validated with a validation subset. Besides, the method of response surface method (RSM) was also used to analyze and predict these properties. By comparing with mean squared error (MSE) and sum squared error (SSE) of BP-ANN and RSM models, it was showed that BP-ANN was more accurate than RSM in predicting the relationship between the responses and the running parameters. The BP-ANN was then used to search for a combination of running parameters resulting in maximal WHC, SD, S and minimal H. As a result, the optimal running parameters for content of surimi, screw speed and heating temperature was 45.70%, 170 r/min and 106.2 %, respectively.
出处 《食品科技》 CAS 北大核心 2012年第9期102-107,共6页 Food Science and Technology
基金 国家863资助项目(2007AA091801)
关键词 神经网络 鱼糜 挤压制品 工艺参数 优化 neural network surimi extrusion product process parameter optimization
  • 相关文献

参考文献18

  • 1Jae W Park. Surimi and surimi seafood, second edition[J]. CRC Press,2005:35.
  • 2任宏伟,胡柳.我国鱼糜制品现状及发展态势[J].中国水产,2010(8):25-26. 被引量:31
  • 3Jain A K, Jianchang Mao, Mohiuddin K M. Artificial neural networks: a tutorial[J]. Computer, 1996,29(3):31-44.
  • 4Satish Kumar. Neural networks: a classroom approach[M]. India:Tata McGraw-Hill Publishing Company Limited, 2004:63.
  • 5Water Hydration Capacity of Protein Materials[S]. AACC Method,2002:56-30.
  • 6王海洪,徐大伦,王雷,徐斌,俞水木.鲢鱼制作鱼肉面条的工艺研究[J].食品科学,1999,20(5):24-27. 被引量:11
  • 7M.Kumar, N S Raghuwanshi, R Singh, et al. Estimating evapotranspiration using artificial neural network[J]. Canadian Metallurgical Quarterly,2002,128(4):224-233.
  • 8Otilia Popescu, Dimitrie C Popescu, Joseph Wilder, et al. A new approach to modeling and control of a food extrusion process using artificial neural network and an expert system[J]. Journal of food process engineering,2001,24 (1):17-36.
  • 9Torrecila J S, Otero L, Sanz P D. Optimization of an artificialneural network for thermal/pressure food processing: Evaluation of training algorithms[J]. Computers and Electronics in Agricuhure,56(2): 101-110.
  • 10Eliane Calomino Gon Calves, Luis Anotonio Minim, Jane Selia Dos Reis Coimbra, et al. Thermal process calculation using artificial neural networks and other traditional methods[J]. Journal of food process engineering,2006, 29(2):162-173.

二级参考文献11

共引文献50

同被引文献29

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部