期刊文献+

基于变化周期和事件驱动的云计算资源监测模型 被引量:2

Resource Monitoring Model in Cloud Computing Based on Dynamic Period and Event-Driven
下载PDF
导出
摘要 云计算环境下的资源监测是云计算平台资源管理的重要组成部分,为资源分配、任务调度和负载均衡等提供了依据。根据云计算资源的特性,本文提出的资源监测模型结合了动态周期和事件驱动监测,具有良好的时效性、健壮性、松散耦合性以及可扩展性。该模型能够实时收集资源监测信息以及发现云计算中的故障,满足云计算平台特性需求。 Resource monitoring in cloud computing environment is a significant part of cloud computing platform for resource management, which provides a basis for resource allocation, task scheduling and load balancing, etc. According to the characteristics of cloud computing resources, this paper put forward a monitoring model based on dynamic period and event-driven, and it has excellent timeliness, robustness, loose coupling and scalable by combining dynamic period and event-driven monitoring. The model can collect real-time resource monitoring information, and discover the faults of cloud computing environment timely and meet the need of cloud computing platform.
作者 郭平 冯婷莹
出处 《电信科学》 北大核心 2012年第9期38-42,共5页 Telecommunications Science
关键词 云计算 资源监测 变化周期 事件驱动 cloud computing, resource monitoring, dynamic period, event-driven
  • 相关文献

参考文献21

  • 1Hayes B. Cloud computing. Commun ACM, 2008, 51(7):9-11.
  • 2Milojicic D. Cloud computing: interview with RUSS daniels and franco travostino. IEEE Intemet Computing, 2008, 12(5):7-9.
  • 3Armbrust M, Fox A, Griffith R, et ol. Above the clouds: a berkeley view of cloud computing. Communications of the ACM, 2010, 53(4):50N58.
  • 4Wolf F, Mohr B. Hardware-counter based automatic performance analysis of parallel programs. Proceedings of the Conference on Parallel Computing , Dresden, Germany, 2003:753-760.
  • 5Massie M L, Chun B N, Culler D E. The ganglia distributed monitoring system: design, implementation, and experience. Parallel Computing, 2004, 30(7): 817-840.
  • 6Vetter J S, Reed D A. Real-time performance monitoring, adaptive control, and interactive steering of computational grids. The International Journal of High Performance Computing Applications, 2000, 14(4): 357-366.
  • 7Shaffer E, Reed D A, Whitmore S, et al. Virtue: performance visualization of parallel and distributed applications. IEEE Computer, 1999, 32(12): 44-51.
  • 8Diaz I, Fernandez G, Martinm M J, et al. Integrating the Common Information Model with MDS4. Proceedings of 2008 9th IEEE/ACM International Conference on Grid Computing, Tsukuba, Japan, 2008:298-303.
  • 9杨刚,随玉磊.面向云计算平台自适应资源监测方法[J].计算机工程与应用,2009,45(29):14-17. 被引量:20
  • 10Daniel D, Lovesum S P J. A novel approach for scheduling service request in cloud with trust monitor. Proceedings of 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN 2011), Thuckalay, India, 2011:509-513.

二级参考文献10

  • 1Hayes B.Cloud computing[J].Commun AC M, 2008,51 ( 7 ) : 9-11.
  • 2Milojicic D.Cloud computing:Interview with russ daniels and franco travostino[J].IEEE Internet Computing, 2008,12 (5) : 7-9.
  • 3Armbrust M, Fox A, Griffith R, et al.Above the clouds : A berkeley view of cloud computing,UCB/EECS-2009-28[R].Electrical Engineering and Computer Sciences University of California,Berkeley, 2009.
  • 4Massie M L,Chun B N,Culler D E.The ganglia distributed monitoring system:Design,implementation,and experience[J].Parallel Computing, 2004,30(7 ) : 817-840.
  • 5Poladian V,Arlan A,Shaw M,et al.Leveraging resource prediction for anticipatory dynamic configuration[C]//First International Conference on Self-Adaptive and Self-Organizing Systems,2007:214-223.
  • 6Domingues P,Silva L,Monitor D R.A distributed resource monitoring system[C]//Pro 11th Euromicro Conference on Parallel,Distributed and Network-based Processing, 2003 :127-133.
  • 7Bearden M,Bianchini R.Efficient and fault-tolerant distributed host monitoring using system-level diagnosis[C]//Proceedings of the IFIP/ IEEE International Conference on Distributed Platforms:Client/ Server and Beyond:DCE,CORBA,ODP and Advanced Distributed Applications, 1996:159-172.
  • 8Othman O, Balasubramanian,Schmidt D.Performance evaluation of an adaptive middleware load balancing and monitoring service[C]// Proc of the 24th IEEE Intl,2004:135-146.
  • 9Henning M.A new approach to object-oriented middleware[J].IEEE Internet Computing, 2004,8( 1 ) : 66-75.
  • 10Michi H.Choosing middleware:Why perofrmance and scalability do(and do not)matter[R].Zeroc,2009.

共引文献19

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部