期刊文献+

基于粒子滤波的改进型单值控制图 被引量:1

Modified Individual Control Chart Based on Particle Filter
原文传递
导出
摘要 针对高度复杂小批量生产环境下的统计过程控制问题,提出基于粒子滤波的改进型单值控制图。通过状态空间模型描述过程运行特征,并运用粒子滤波技术估计过程的运行状态,以状态粒子群的均值为对象,运用平均移动极差控制图对正态分布过程的漂移进行监控。研究结果表明,该方法是小批量生产过程质量控制的有效工具。 It is difficult to apply traditional individual control chart technology in high complex small batch production process. A modified individual control chart based on particle filter is proposed in this paper. The process is modeled by state space model, and the state is estimated through particle filter technology. The mean of state particles group is monitored by Average Moving Range (AMR) control chart to detect variation of normal distribution process. Results showed that the proposed chart is an effective tool to monitor small batch production process.
出处 《数理统计与管理》 CSSCI 北大核心 2012年第5期849-856,共8页 Journal of Applied Statistics and Management
基金 国家自然科学基金重点项目(70931004)
关键词 平均移动极差控制图 状态空间模型 粒子滤波 均值 average moving range control chart, state space model, particle filter, mean
  • 相关文献

参考文献11

  • 1Rose, K, Does R, Schurink, Y. Shewhart-type control charts for individual observations [J]. Journal of Quality Technology, 1993, 25(3): 188-198.
  • 2Rigdon S E, Cruthis E N, Champ C W. Design strategies for individuals and moving range control charts [J]. Journal of Quality Technology, 1994, 26(4): 274-287.
  • 3Adke S R, Hong X. A supplementary test based on the control chart for individuals [J]. Journal of Quality Technology, 1997, 29(1): 16-20.
  • 4Rahardja D. X-charts versus X/MR chart combinations: IID cases and non-IID cases [J]. Quality Engineering, 2005, 188-196.
  • 5Trip A, Wieringa J E. Individuals charts and additional tests for changes in spread [J]. Quality and Reliability Engineering International, 2006, 22: 239-249.
  • 6Reynolds M R, Stoumbos Z G. Individuals control schemes for monitoring the mean and variance of processes subject to drifts [J]. Stochastic Analysis and Applications, 2001, 19(5): 863-892.
  • 7Vermaat M B, Ion R A, Does R J IV[, Klaassen C A J. A comparison of Shewhart individuals control charts based on normal, non-parametric, and extreme-value theory [J]. Quality and Reliability Engineering International, 2003, 19: 337-353.
  • 8王晶,何桢,李湧范.面向多品种小批量生产过程的Bootstrap控制图[J].工业工程,2009,12(2):64-67. 被引量:10
  • 9Huwang L, Yeh A B, Wu C V. Monitoring multivariate process variability for individual observations [J]. Journal of Quality Technology, 2007, 39: 258-278.
  • 10Arulampalam S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for on-line non- linear/non-Gaussian Bayesian tracking [J]. IEEE Transaction on Signal Processing, 2002, 50(2): 174-188.

二级参考文献13

  • 1胡兴才,叶文华.小批量生产条件下的统计过程控制研究[J].机械研究与应用,2006,19(1):36-38. 被引量:3
  • 2王丽颖,孙丽,王秀伦.基于虚拟工序的小批量工序质量控制方法研究[J].计算机集成制造系统,2006,12(8):1263-1266. 被引量:26
  • 3李韶华.小批量Q控制图检出力及应用策略研究[D].天津:天津大学,2004.
  • 4Hillier F S. X and R chart control limits based on a small number of subgroups [ J ]. Journal of Quality Technology, 1969( 1 ) :17-26.
  • 5Quesenberry C P. SPC Q-charts for start-up processes and short or long runs [ J]. Journal of Quality Technology. 1991, 23(3) :213-224.
  • 6Castillo Enrique del, Montgomery D C. Short-run statistical process control:Q-Chart enhancements and alternative methods [ J ]. Quality and Reliability Engineering International, 1994,10(2) :87-97.
  • 7Page E S. Control charts for the mean of a normal population [J]. Journal of the Royal Statistical Society, 1954, 16 ( 1 ) : 131-135.
  • 8Roberts S W. Control chart tests based on geometric moving averages [ J]. Teehnometrics, 1959,1 (3) :239-250.
  • 9Efron B. Bootstrap methods:another look at the Jackknife [ J ]. The Annuals of Statistics, 1979,7 ( 1 ) : 1-26.
  • 10Efron B, Tibshirani R J. An Introduction to the Bootstrap [ M]. New York:Chapman & Hall,1993.

共引文献9

同被引文献19

  • 1佟春生,黄强,刘涵.基于复杂性理论的径流时间序列动力学特征分析[J].系统工程理论与实践,2004,24(9):102-107. 被引量:10
  • 2Fraser A M;Swinney H L.Independent coordinates for strange attractors from mutual information,1986(02).
  • 3Packard NH,Cratchfield JP,Farmer JD,et al.Geometry from a time series[].Physical Review.1980
  • 4Michael T. Rosenstein,James J. Collins,Carlo J. De Luca.A practical method for calculating largest Lyapunov exponents from small data sets. Physica D Nonlinear Phenomena . 1993
  • 5Tao Yang,Lin-Bao Yang,Chun-Mei Yang.Breaking chaotic secure communication using a spectrogram[J]. Physics Letters A . 1998 (1)
  • 6Liangyue Cao.Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena . 1997 (1)
  • 7Luis Antonio Aguirre,S.A. Billings.Identification of models for chaotic systems from noisy data: implications for performance and nonlinear filtering[J]. Physica D: Nonlinear Phenomena . 1995 (1)
  • 8Mathews V J.Adaptive polynomial filters. IEEE Signal Processing Magazine . 1991
  • 9Junghsi Lee,V.John Mathews.A fast recursive least squares adaptive second-order Volterra filter and its performance analysis. IEEE Transactions on Signal Processing . 1993
  • 10Takens F.Determining strange attractors in turbulence. Lecture Notes in Mathematics . 1981

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部