期刊文献+

基于地理加权回归的我国中东部城市商品房价格的空间特征分析 被引量:15

Spatial Characteristics Analysis of House Price in Central and Eastern China Based on Geographically Weighted Regression
原文传递
导出
摘要 本文基于地理加权回归方法,分析了我国中东部地区主要大中城市商品房价格与人均工资和人口数之间回归关系的空间变化特征。结果表明,我国中东部地区主要大中城市的商品房价格除受地域位置的影响外,工资水平和人口数的影响强度在各地区也存在着显著差异,呈现显著的空间非平稳性。 In this study, the geographically weighted regression (GWR) technique is used to analyze spatial characteristics of the relationship between house price, wages and population in the cities of central and eastern China. The results demonstrate that the impact intensity of wages and population to the house price varies significantly across the region and the regression relationship is spatially non-stationary.
作者 张琰 梅长林
出处 《数理统计与管理》 CSSCI 北大核心 2012年第5期898-905,共8页 Journal of Applied Statistics and Management
基金 国家自然科学基金(10971161)的支助
关键词 地理加权回归 商品房价格 空间非平稳性 geographically weighted regression, house price, spatial non-stationaxity
  • 相关文献

参考文献12

  • 1Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: A method for exploring spatial nonstationarity [J]. Geographical Analysis, 1996, 28: 281-298.
  • 2Leung Y, Mei C L, Zhang W X. Statistical tests for spatial nonstationarity based on the geographi- cally weighted regression model [J]. Environment and Planning (A), 2000, 32: 9-32.
  • 3Brunsdon C, Fotheringham A S, Charlton M. Some notes on parametric signaficance tests for geo- graphically weighted regression [J]. Journal of Regional Science, 1999, 39: 497-524.
  • 4Paez A, Uchida T, Miyamoto K. A general framework for estimation and inference of geographi- cally weighted regression models: 1. Location-specific kernel bandwidths and a test for locational heterogeneity [J]. Environment and Planning (A), 2002, 34: 733-754.
  • 5Mei C L, He S Y, Fang K T. A note on the mixed geographically weighted regression model [J]. Journal of Regional Science, 2004, 44: 143-157.
  • 6Wheeler D C. Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso [J]. Environment and Planning (A), 2009, 41: 722-742.
  • 7Zhang L J, Shi H J. Local modelling of tree growth by geographically weighted regression [J]. Forest Science, 2004, 50: 225-244.
  • 8Wang Q, Ni J, Tenhunen J. Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems [J]. Global Ecology and Biogeography, 2005, 14: 379-393.
  • 9Propastin P A, Kappas M. Reducing uncertainty in modeling the NDVI-precipitation relationship: A comparative study using global and local regression techniques [J]. GIScience & Remote Sensing, 2008, 45: 47-67.
  • 10Bitter C, Mulligan G F, Dall'erba S. Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method [J]. Journal of Geographical Systems, 2007, 9: 7-27.

同被引文献149

引证文献15

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部