期刊文献+

基于单目视觉传感器的车距测量与误差分析 被引量:18

Vehicle distance measurement and its error analysis based on monocular vision sensor
下载PDF
导出
摘要 为了解决结构化道路上基于单目视觉的运动车辆车距测量问题,从针孔模型下摄像机成像的基本原理出发,推导出基于图像中车道线消失点的车距计算公式。车距测量结果只与图像中的近视场点到摄像机的实际距离有关,而无需对所有的摄像机参数进行标定。分析了车距测量中的误差因素,并在前方道路上设置已知距离的横向标线,完成了摄像机不同安装高度、俯仰角及方向角情况下的标线距离测量实验。通过与实际距离比较发现,摄像机安装高度与方向角的微小变化对车距测量的影响可以忽略,而摄像机俯仰角的变化将引起较大的车距测量误差。最后,完成了不同距离处前方车辆车距测量实验,实验结果表明:采用上述方法的车距测量相对误差小于3%,具备了较高的检测精度。 To resolve the problem of vehicle distance measurement based on monocular vision on structural road, the formula of distance calculation based on vanishing point of lane lines is deduced from the basic theory of imaging by a pinhole model camera. The calculation is related only to the actual distance between the camera and the point of near field of view without calibrating all parameters of the camera. Then the error factors are analyzed and experiments for the measurement of distance between the camera and the horizontal markings on the road is performed under different camera installing height, pitching and orientation angles. Compared with the actual distance ,the results indicate that the effect of the small changes of installing height and orientation angles on distance measurement can be ignored, while the change of pitching angle leads to a large error. At last, the experiment of vehicle distance measurement is also performed with a preceding vehicle on the road. The result demonstrates that the relative error is less than 3 % and a high precision is reached.
出处 《传感器与微系统》 CSCD 北大核心 2012年第9期10-13,共4页 Transducer and Microsystem Technologies
基金 国家教育部博士点新教师基金资助项目(200802861061) 江苏省汽车工程重点实验室开放基金资助项目(QC200603) 江苏省交通科学研究计划资助项目(06C04)
关键词 车辆避撞系统 单目视觉 车距测量 误差分析 vehicle collision avoidance system monocular vision vehicle distance measurement error analysis
  • 相关文献

参考文献13

  • 1Kasuga T,Yakubo S.Design of a dependable model vehicle forrear-end collision avoidance and its evaluation[C]∥Instrumenta-tion and Measurement Technology Conference(IMTC),Austin,TX,USA,2010:641-646.
  • 2Tsuchiya J,Hayashi M,Kohno R.Platoon characteristics of auto-matic vehicle speed control for vehicles equipped with DS-UWBradar[C]∥IEEE 11th International Symposium on Spread Spec-trum Techniques and Applications(ISITA),Taichung,2010:125-130.
  • 3Parviainen J,Vázquez López A M,Pekkalin O,et al.Using Dopplerradar and MEMS gyro to augment DGPS for land vehicle naviga-tion[C]∥The 18th IEEE International Conference on Control Ap-plications,Saint Petersburg,Russia,2009:1690-1695.
  • 4Chen Y D,Meng Z Q,Liu J L,et al.High-precision infrared pulselaser ranging for active vehicle anti-collision application[C]∥2011 International Conference on Electric Information and ControlEngineering(ICEICE),Wuhan,China,2011:1404-1407.
  • 5谢兴盛 ,方勇文 ,吴云峰 ,叶玉堂 ,陈昌彬 ,李长成 ,王兵学 .汽车自适应驰控装置中的红外激光测距[J].激光技术,2004,28(5):521-523. 被引量:8
  • 6Huh K,Park J,Hwang J,et al.A stereo vision-based obstacle de-tection system in vehicles[J].Optics and Lasers in Engineering,2008,46(2):168-178.
  • 7Toulminet G,Bertozzi M,Mousset S,et al..Vehicle detection bymeans of stereo vision-based obstacles features extraction and mo-nocular pattern analysis[J].IEEE Transactions on Image Proce-ssing,2006,15(8):2364-2375.
  • 8Lim Youngchul,Lee Chunghee,Kwon Soon,et al.Position estima-tion and multiple obstacles tracking method based on stereo visionsystem[C]∥2009 IEEE Intelligent Vehicles Symposium,Xi’an,China,2009:72-77.
  • 9孙军华,吴子彦,刘谦哲,张广军.大视场双目视觉传感器的现场标定[J].光学精密工程,2009,17(3):633-640. 被引量:40
  • 10Kuo Y C,Pai N S,Li Y F.Vision-based vehicle detection for adriver assistance system[J].Computers and Mathematics withApplications,2011,61(8):2096-2100.

二级参考文献39

共引文献175

同被引文献124

引证文献18

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部