期刊文献+

基于Kinect深度图像的人体识别分析 被引量:25

Analysis of human identification based on kinect depth image
下载PDF
导出
摘要 介绍了深度图像在模式识别中的研究现状及其在人体识别中的应用。针对目前普通相机拍摄的图像识别在光照、姿态、遮挡等因素影响下性能下降的问题,以微软推出的Kinect设备为平台,通过分析Kinect相机获取的深度图的特征,提出以综合点特征和梯度特征的局域梯度特征的方式来对人体部位区分判定,并以手肘为例作了简要论证。 Nowadays somatosensory human-computer interaction devices have become hotspot applications in the field of dig- ital media. These devices capture the depth images of players through several inner cameras and sensors, from which hu- man skeletons can be extracted, and players' movement can be tracked and captured. We introduce the research status of depth image in the field of pattern recognition and application of human recognition. Since the recognition of images cap- tured by common cameras shows poor performance in the influence of illumination, posture and overlap, based on the de- vice of Microsoft Kinect, the features of depth images captured by Kinect cameras are analyzed. Then, local gradient fea- tures integrating point features and gradient features have been put forward to identify human body. Brief demonstration and analysis are given by taking elbow as an example.
出处 《数字通信》 2012年第4期21-26,共6页 Digital Communications and Networks
关键词 KINECT 深度图像 局域梯度特征 人体识别 Kinect depth image local gradient features human recognition
  • 相关文献

参考文献21

  • 1王晓光,苏群星.虚拟维修通用仿真软件系统的设计[J].计算机仿真,2006,23(8):266-268. 被引量:11
  • 2YUKIHIRO M, TOSHINORI Y. VR-based interactive learning environment for power plant operator [ C ] //. Proceedings of the International Conference on Computers in Education. Washington DC: IEEE Computer Society, 2002 : 922-923.
  • 3范剑英,于舒春,王洋,于贵江,于晓洋.基于法向分量边缘融合的深度图像分割[J].计算机工程,2010,36(17):221-222. 被引量:8
  • 4XIA Lu, CHEN C C, AGGARWAL J K. Human detec- tion using depth information by Kinect [ EB/OL ]. ( 2011- 11-21 ) [ 2012-04-18 ] . http ://download. csdn. net/down- load/guoming0000/3820813.
  • 5ABHISHEK K. Skeletal tracking using Microsoft Kinect [ J]. Methodology, 2010 : 1-11.
  • 6SHOTTON J, FITZGIBBON A, COOK M. Real-time hu- man pose recognition in parts from single depth images[EB/OL]. (2011-04-20) [20124)4-18]. http: ffwww. computer, org/csdl/proceedings/cvpr/2011/0394/00/0599 5316-abs. html.
  • 7FANELLI G, WEISE T, GALL J. Real time head pose estimation from consumer depth cameras [ EB/OL ]. (2011-11-20) [ 2012434-18 ] . http://wenku, baidu, com/ view/4df718b569dcSO22aaeaO017, html.
  • 8CANNY J. A computational approach to edge detection [ J]. Pattern Analysis and Machine Intelligence, 1986,8 (6) :679-698.
  • 9GREST D, WOETZEL J, KOCH R. Nonlinear body pose estimation from depth images [ J ]. Computer Science, 2005,3663:285-292.
  • 10赵海珍,李桐林,于国峰.复杂矩形网等值线图的剪切[J].中国图象图形学报(A辑),2002,7(4):380-383. 被引量:7

二级参考文献16

  • 1李胡送,王家华.计算空间曲面顶点法向量的方法[J].福建电脑,2005,21(7):56-57. 被引量:1
  • 2丁益洪,平西建,胡敏.基于随机Hough变换的深度图像分割[J].计算机辅助设计与图形学学报,2005,17(5):902-907. 被引量:13
  • 3Bowyer K W,Flynn K C P.A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition[J].Computer Vision and Image Understanding,2006,101 : 1-15.
  • 4Ahonen T,Pietikainen A H M.Face recognition with local binary patterns[C]//ECCV,Prague, 2004:469-481.
  • 5Belhumeur P,Kriegman J H D.Eigenfaces vs.fisherfaces:Recognition using class specific linear projeetion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :711-720.
  • 6Snelick R,Mink U U A,Indovina M,et al.Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 ( 3 ) : 450-455.
  • 7Wong K,Hu W L Y H,Boston N,et al.Optimal linear combination of facial regions for improving identification performance[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics, 2007,37(5): 1138-1148.
  • 8Phillips P J,Scruggs P J F T,Bowyer K W,et al.Overview of the face recognition grand challenge[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05), 2005 : 947-954.
  • 9孙晓兰 赵惠洁 祝世平.基于深度图像的边缘检测方法研究.光学技术,2005,31:219-222.
  • 10Besl P J,Jain R C.Segmentation Through Variable Order Surface Fitting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(2):167-192.

共引文献27

同被引文献243

引证文献25

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部