期刊文献+

基于多目标遗传算法的热定型工艺参数优化设计 被引量:3

Proccess Parameters Optimization of Heat Setting Process Based on Multi-Objective Genetic Algorithm
下载PDF
导出
摘要 为了解决染整后整理中热定型工艺参数难以定量设计的关键技术难题,将工艺参数优化设计问题视为以成品门幅、克重与客户要求的相应值的绝对误差最小为目标函数,温度、车速、超喂率和上机门幅为优化变量,以根据实际情况中各优化变量的取值范围为约束条件的多目标优化问题。建立多目标优化模型,并基于该模型采用多目标遗传算法,实现了热定型参数精确定量设计。用该方法得到的工艺参数加工弹力布,生产成品的克重、门幅与用户要求指标的偏差小于1%,完全可以满足实际生产要求。 In order to solve the key technical problem that it is difficult to quantitatively design the heat setting process parameter in dyeing and finishing, the objective function is established in this paper based on the minimum absolute error of width, weight between the finished product and customer requirements. Taking the temperature, speed, feeding rate and the width as optimization variables, the multi-objective optimization model is established. Then, the design of precise quantitative parameter in heat setting process is realized by using multi-objective genetic algorithm based on the above-mentioned model. The elastic fabric processing with the process parameters from the method mentioned in the paper, which the deviation between the product and user requirements parameters about weight, width is less than 1%, can meet the actual production requirements fully. When the elastic fabric is produced by using the designed parameters with the proposed method for heat-setting process, the deviation between the weight and width of finished product and customer requirements is less than 1%. It can meet the actual production requirements fully.
出处 《江南大学学报(自然科学版)》 CAS 2012年第4期453-457,共5页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家自然科学基金项目(60113005) 福建省产学研重大项目(2011H6019) 弹力棉织物热定型工艺计算机辅助设计系统研究与应用项目(2011G8)
关键词 染整后整理 热定型工艺 多目标遗传算法 参数优化 dyeing and finishing heat-settlng process multi-objective genetic algorithm parameter optimization
  • 相关文献

参考文献8

二级参考文献28

  • 1李玉榕,项国波.一种基于多目标遗传算法的非线性控制器[J].计算机仿真,2004,21(5):61-63. 被引量:5
  • 2卢香清,谭迎军.有关多目标遗传算法的研究[J].南阳师范学院学报,2004,3(9):62-64. 被引量:11
  • 3崔浩然.棉氨纬弹织物染整加工的难点与应对[J].印染,2006,32(11):15-19. 被引量:3
  • 4QAMARUL I M. Multiple linear regression model under nonnormality [ J ]. Communications in Statistics Theory and Methods ,2004,33 (10) :2443 - 2467.
  • 5SUYKENS J A K, VANDEWALLE J. Recurrent least squares suppot vector machines [ J ]. IEEE Transactions on Cireuits and Systems ,2000,47 ( 7 ) : 1109 - 1114.
  • 6雷迅.可控硅直流传动控制系统中的ITAE最佳调节律[J].自动化学报,1983,9(3):229-232.
  • 7J C Clegg. A Nonlinear Integrator for Servomechanism [ M ]. Trans.AIEE, Part Ⅱ: Appl. Ind., 1958.77.
  • 8Ying Gao,Lei Shi Pingjing Yao.Study on Multi-Objective Genetic Algorithm[C].Proceedings of the 3th World Congress on Intelligent Control and Automation,2000.
  • 9Goldberg D E.Genetic algorithms in search optimization and machine learning[M].Reading,MA:Addison-Wesley,1989.
  • 10张恒喜,等.现代飞机费效分析[M].北京:航空工业出版社,2000.

共引文献157

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部