期刊文献+

基于格子Boltzmann方法的换热器优化模拟 被引量:1

Optimization simulation on heat exchanger based on lattice Boltzmann method
下载PDF
导出
摘要 为优化换热器的结构设计,用格子Boltzmann方法(Lattice Boltzmann Method,LBM)结合多孔介质模型模拟换热器内的换热,研究雷诺数、普朗特数和热扩散率比的变化对温度场和换热性能的影响.模拟结果表明:在小雷诺数范围内,随着雷诺数的增加,努塞尔数先增加后减小,即存在一个使换热性能达到最好的雷诺数;随着普朗特数的增加,努塞尔数减小,换热性能降低;随着热扩散率比的增加,换热性能提高.分析不同管柱排列方式对换热性能的影响,结果表明:叉排的换热效果明显优于顺排,当横向节距等于2时,对于均匀顺排或叉排,努塞尔数均随纵向节距的增加而减小,这与实验结果相符;对于非均匀叉排,采用"前密"或"中间密"的排布方式有利于换热. To optimize the structure design of heat exchanger, the heat exchange in heat exchanger is simulated by Lattice Bohzmann Method (LBM) combining with porous medium model. The effect of Reynolds number, Prandtl number and thermal diffusivity ratio on temperature field and heat exchange performance is studied. The simulation results indicate that, for small Reynolds number, Nusselt number firstly increases and then decreases with the increase of Reynolds number, i. e. , there exists an optimum value of Reynolds number which yields the best heat exchange performance; Nusselt number decreases with the increase of Prandtl number, i. e. , the heat exchange performance is weakened; the increase of thermal diffusivity ratio strengthens heat exchange. The heat exchange performance under different arrangements of pipes are analyzed, and the results shows that, heat exchange performance of staggered pips bank is much better than that of aligned pipes; if the transversal pitch is set as two, Nusselt number decreases with the increase of longitudinal pitch for both aligned and staggered pipes, which is consistent with experimental results; for non-uniform staggered pipes, the arrangements of "intensity in the front" or "intensity in the middle" indicate better heat exchange performance.
出处 《计算机辅助工程》 2012年第4期27-31,共5页 Computer Aided Engineering
关键词 换热器 格子Blotzmann方法 传热系数 多孔介质模型 heat exchanger lattice Boltzmann method heat transfer coefficient porous medium model
  • 相关文献

参考文献10

  • 1PATANKAR S V, SPALDNIG D B. A calculation procedure for the transient and steady state behavior of shell-and-tube heat exchangers[ M ] // AFGAN N, SCHLUNDER E U. Heat exchanger design and theory sourcebook. Washington D C: Scripta Book Company, 1974: 155-176.
  • 2刘伟,明廷臻.管内核心流分层填充多孔介质的传热强化分析[J].中国电机工程学报,2008,28(32):66-71. 被引量:21
  • 3HAO Liang, CHENG Ping. Pore-scale simulations on relative permeabilities of porous media by lattice Bohzmann method[ J]. Int J Heat & Mass Tran, 2010, 53(9-10): 1908-1913.
  • 4HUANG Haibo, Jr THORNE D T, SCHAAP M G, et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiohase lattice Boltzmann models [ J ]. Phys Rev E, 2007, 76 (6) : 66701fi6706.
  • 5VERHAEGHE F, LUO Lishi, BLANPAIN B. Lattice Boltzmann modeling of microchannel flow in slip flow regime[ J]. J Comput Phys, 2009, 228(1) : 147-157.
  • 6ZHANG Junfeng, KWIK D Y. A 2D lattice Boltzmann study on electrohydrodynamic drop deformation with the leaky dielectric theory [ J]. J Comput Phys, 2005, 206( 1 ) : 150-161.
  • 7龚帅,郭照立.流向振荡圆柱绕流的格子Boltzmann方法模拟[J].力学学报,2011,43(1):11-17. 被引量:15
  • 8董其伍.换热器[M].北京:化学工业出版社,2008:222-225.
  • 9NIEUWSTADT F, KELLER H B. Viscous flow past circular cylinders[J]. Computers & Fluids, 1973, 1 (1) : 59-71.
  • 10COUTANCEAU M, BOUARD R. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 2: unsteady flow[J]. J Fluid Mech, 1977, 79(2) : 257-272.

二级参考文献22

  • 1徐志明,杨善让,甘云华.横纹管污垢性能的实验研究[J].中国电机工程学报,2005,25(5):159-163. 被引量:22
  • 2唐人虎,尹飞,陈听宽.超临界变压运行直流锅炉内螺纹管螺旋管圈水冷壁的传热特性研究[J].中国电机工程学报,2005,25(16):90-95. 被引量:31
  • 3杨昆,刘伟.管内层流充分发展段等效热边界层的构造及其场协同分析[J].工程热物理学报,2007,28(2):283-285. 被引量:19
  • 4Bejan A, Kraus AD. Heat transfer handbook[M]. New Jersey: John Wiley & Sons, 2003.
  • 5Webb RL. Principles of Enhanced Heat Transfer[M]. New York: John Wiley, 1994.
  • 6Ventsislav Z. Enhancement of heat transfer by a combination of threestart spirally corrugated tubes with a twisted tape[J]. International Journal of Heat and Mass Transfer , 2001, 44(3): 551-574.
  • 7Yilmaza M, Comaldia O, Yapici S. Enhancement of heat transfer by turbulent decaying swirl flow[J]. Energy Conversion & Management, 1999, 40(6): 1365-1376.
  • 8Bergles A E. ExHFT for fourth generation heat transfer technology [J]. Experimental Thermal and Fluid Science, 2002, 26(2-4): 335-344.
  • 9Mohamad A. A., Heat transfer enhancements in heat exchangers fitted with porous media Part I: constant wall temperature [J]. International Journal of Thermal Science, 2003, 42(4): 385-395.
  • 10Pavel B I, Mohamad A A. An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media[J]. International Journal of Heat and Mass Transfer, 2004, 47(23):4939-4952.

共引文献57

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部