期刊文献+

协方差交叉融合Kalman预报器

Kalman predictor based on covariance intersection fusion
下载PDF
导出
摘要 对于带未知局部预报误差互协方差的两传感器跟踪系统,通过协方差交叉融合方法,得到了协方差交叉融合稳态Kalman预报器,并用协方差椭圆的方法给出了其精度关系的几何解释。用相关方法证明了协方差交叉融合稳态Kalman预报器的精度高于每个局部稳态最优Kalman预报器,低于按矩阵加权融合稳态最优Kalman预报器。用一个Monte-Carlo仿真例子说明了协方差交叉融合稳态Kalman预报器的精度接近于稳态最优融合Kalman预报器。 By using the covariance intersection (CI) fusion predictor is presented for the two-sensor tracking system with method, the covariance intersection fusion steady-state Kalman unknown cross-covariances between the local predicting errors. The geometric interpretation of accuracy relations is given by means of the covariance ellipses. The relevant methods demon- strate that the accuracy of convariance intersection fusion Kalman predictor is higher than that of each local steady-state optimal Kalman predictor, and is lower than that of the matrix weighted fusion steady-state optimal predictor. A Monte-Carlo simulation example shows that its accuracy is close to that of the steady-state optimal fusion Kalman predictor.
作者 张鹏
出处 《现代电子技术》 2012年第17期107-109,共3页 Modern Electronics Technique
基金 2011年度黑龙江省普通高等学校青年学术骨干支持计划项目(1251G012)
关键词 信息融合Kalman预报器 协方差交叉融合 未知互协方差 协方差椭圆 融合精度 information fusion Kalman predictor covariance intersection fusion unknown cross-covariance covariance ellipse fusion accuracy
  • 相关文献

参考文献10

  • 1BAR Shalom Y, LI Xiao-rong, KIRUBARAJAN T. Esti mation with applications to tracking and navigation [M]. New York. John Wiley & Sons, 2001.
  • 2LI Xiao-rong, ZHU Yun-min, WANG J, et al. Unified op- timal linear estimation fusion, part I. unified fusion rules [J]. IEEE Trans. on Information Theory, 2003, 49 (9): 2192-2208.
  • 3SUN Shu-li, DENG Zi-li. Multi-sensor optimal information fu- sion Kalman filter [J]. Automatica, 2004, 40:1017-1023.
  • 4JULIER S, UHLMANN J K. Non-divergent estimation al gorithm in the presence of unknown correlations [C]// Pro ceedings of 1997 IEEE American Control Conference. Albu querque, NM, USA. IEEE, 1997:2369-2373.
  • 5UHLMANN J K. General data fusion for estimates with unknown cross covariances [C]// Proceedings of the SPIE Aerosence Conference. Orlando, FL, USA. SHE, 1996, 2755:536-547.
  • 6JULIER J, UHLMANN J K. General decentralized data fu sion with covariance intersection in. handbook of multisen sor data fusion, theory and practice [M]. 2nd ed. Boca Ra ton, FL, USA. CRC Press, 2009.
  • 7CHEN L, ARAMBEL P O, MEHRA R K. Esti der unknown correlation. covariance intersectio [J]. IEEE Trans. on Automatic Control, matlon un- n revisited 2002,47 (11):1879-1882.
  • 8袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2003..
  • 9付梦印,邓志红,张继伟.Katman滤波理论及其在导航系统中的应用[M].北京.科学出版社,2003.
  • 10LJUNG L. System identification-theory for user [M]. 2nd ed. New Jersey. Preucice Hall, 1999.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部