期刊文献+

乳腺MRI图像肿瘤轮廓的提取 被引量:1

Extraction initial contour of breast MRI images
原文传递
导出
摘要 提出一种改进的混合水平集方法提取乳腺肿瘤图像.首先利用最大类间方差法与区域生长法将乳腺初始轮廓从乳腺MRI图像中提取出来,然后将此乳腺初始轮廓曲线作为水平集的初始轮廓曲线进行演化,进而找到肿瘤的边界.应用本方法对福建肿瘤医院提供的临床数据进行了实验验证分析.实验结果表明,该方法对于复杂的乳腺MRI序列图的肿瘤分割具有较好的效果. This paper propose a hybrid level set for segmentation of breast tumor. At first, the outline of breast is extracted by the use of the combination method of Otsu and region growing and the outline curve is used as the initial evolution curve of the hybrid level set for breast tumor extraction. The experimental results show that the method is useful for the breast MRI of Cancer Hospital of Fujian.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期464-470,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2009J01282) 福建省科技平台建设资助项目(2008J1005)
关键词 乳腺 肿瘤 图像分割 最大类间方差法 区域生长法 混合水平集法 breast tumor image segment Otsu region growing hybrid level set
  • 相关文献

参考文献8

  • 1Zheng Yuan - jie, Englander S, Sclmall M D, et al. Step: spatial - temporal enhancement pattem, for MR - based breast tumor diagnosis[J]. IEEE, 2007(7) : 520 -523.
  • 2Zheng Yuan -jie, Baloch S, Englander S, et al. Segmentation and classification of breast tumor using dynamic contrast - en- hanced MR images[J]. MICCAI, 2007, 4792:393 -401.
  • 3Chen Wei - jie, Giger M L, Bick U. A fuzzy e - means (FCM) - based approach for computerized segmentation of breast le- sions in dynamic contrast- enhanced MR images[ J ]. Acad Radiol, 2006, 13:63 - 72.
  • 4Coto E, Grimm S, Bruckner S, et al. MammoExplorer: an advanced CAD application for breast DCE - MRI[ C]//Proceedings of Vision, Modelling and Visualization. 2005, 38 : 396 - 403.
  • 5Lucht R, Delorme S, Brix G. Neural network -based segmentation of dynamic MR mammographic images [ J ]. Magn Beson Im- aging, 2002, 20:147 - 154.
  • 6Vese L H T. Active contour without edges[J]. IEEE Transactions on Image Processing, 2001, 10:266-277.
  • 7张玲,郭磊民,何伟,陈丽敏.一种基于最大类间方差和区域生长的图像分割法[J].信息与电子工程,2005,3(2):91-93. 被引量:27
  • 8Li Chun - ming, Xu Chen - yang, Fox M D. Level set evolution without re - initialization: a new variational formulation [ C ]// IEEE International Conference on Computer Vision and Pattern Recogaition(CVPR). San Diego: IEEE, 2005: 430- 436.

二级参考文献6

共引文献26

同被引文献13

  • 1任靖,李春平.最小距离分类器的改进算法——加权最小距离分类器[J].计算机应用,2005,25(5):992-994. 被引量:30
  • 2任彬,汪炳权,罗斌.基于直方图指数平滑的阈值和峰点自动检测方法[J].中国图象图形学报(A辑),1997,2(4):230-233. 被引量:34
  • 3JEMAL A, BRAY M M, CENTER J, et al. Global cancer statistics [J]. CA: Cancer Journal for Clinicians, 2011, 61 (2) :69-90.
  • 4CHEN W J, GIGER M L, LAN L, et al. Computerized interpretation of breast MRI : investigation of enhancement-variance dynamics[ J]. Medical physics, 2004, 31(5) : 1076-1082.
  • 5CHEN W, GIGER M L, BICK U. A fuzzy c-means (FCM) -based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images [ J]. Academic radiology, 2006, 13 (1) : 63-72.
  • 6PANG Y, LI L, HU W, et al. Computerized segmentation and characterization of breast lesions in dynamic contrast-en- hanced MR images using fuzzy c-means clustering and snake algorithm [ J ]. Computation and mathematical methods in medicine, 2012, 2012: 634907.
  • 7BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[ Jl. Plenum Press, New York, 1981.
  • 8PAL N R, BEZDEK J C. On cluster validity for the fuzzy C-means model[ J]. IEEE Transactionson Fuzzy Systems, 1995, 3 ( 3 ) : 370-379.
  • 9张茜,邵堃,刘磊.一种基于最小距离分类器的恶意代码检测方法[J].广西师范大学学报(自然科学版),2009,27(3):183-187. 被引量:4
  • 10李强.磁共振成像研究进展[J].北京生物医学工程,2010,29(3):308-311. 被引量:10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部