摘要
针对图像噪声常见的三种脉冲噪声模型,在像素差异均等性原则下,以窗口分块方式将图像像素分为噪声像素和非噪声像素子集,进而以噪声图像上下像素值阈值推导噪声类型判别式,得到一种非线性像素分类的图像噪声检测算法.以经典图像(Lena、Baboon)分别叠加上不同密度噪声进行噪声图像检测算法仿真测试,由检测精确性和正确性来评估所提出的检测算法的检测性能.仿真结果表明,该检测算法具有较好的检测效果,缺点是容易将部分非噪声像素识别为噪声像素.
According to three kinds of impulse noises in image processing, a novel technique is presented to classify pixels by pixel difference uniformity with blocks into noise pixel sets and non -noise pixel sets. Moreover, a novel nonlinear noise detector is proposed to identify the noise types by a discfiminance with up - down pixel thresholds in noise image. The presented algorithm is tested by a classical image(Lena) and image(Baboon) with adding a different density noise. The simulation results are evaluated by two indexes, named detecting accuracy and detecting correctness. The results indicate that the proposed algorithm has a favorable detecting performance, but its shortage is easy to mistake a non -noise pixel for a noise pixel.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第4期471-477,共7页
Journal of Fuzhou University(Natural Science Edition)
基金
教育部博士点新教师基金资助项目(20113514120007)
福建省自然科学基金资助项目(2010J05132)
福建省教育厅科研资助项目(JA10034)
关键词
像素分类
像素阈值
噪声检测
脉冲噪声
pixel classification
pixel threshold
noise detect
impulse noise