摘要
Characteristics of the turn-on and turn-off voltage of avalanche p-n junctions were demonstrated and studied. As opposed to existing reports, the differences between the turn-on and turn-offvoltage cannot be neglected when the size of the p-n junction is in the order of microns. The difference increases inversely with the area of a junction, exerting significant influences on characterizing some parameters of devices composed of small avalanche junctions. Theoretical analyses show that the mechanism for the difference lies in the increase effect of the threshold multiplication factor at the turn-on voltage of a junction when the area of a junction decreases. Moreover, the "breakdown voltage" in the formula of the avalanche asymptotic current is, in essence, the avalanche turn-off voltage, and consequently, the traditional expression of the avalanche asymptotic current and the gain of a Geiger mode avalanche photodiode were modified.
Characteristics of the turn-on and turn-off voltage of avalanche p-n junctions were demonstrated and studied. As opposed to existing reports, the differences between the turn-on and turn-offvoltage cannot be neglected when the size of the p-n junction is in the order of microns. The difference increases inversely with the area of a junction, exerting significant influences on characterizing some parameters of devices composed of small avalanche junctions. Theoretical analyses show that the mechanism for the difference lies in the increase effect of the threshold multiplication factor at the turn-on voltage of a junction when the area of a junction decreases. Moreover, the "breakdown voltage" in the formula of the avalanche asymptotic current is, in essence, the avalanche turn-off voltage, and consequently, the traditional expression of the avalanche asymptotic current and the gain of a Geiger mode avalanche photodiode were modified.
基金
supported by the Doctoral Start-Up Fund of Xi'an Polytechnic University,China(No.BS1126)
the Project of Ministry of Education,Shanxi Province(No.12JK0975)