期刊文献+

Theoretical Studies on the M-M Bonding in Complexes [M_2Cl_4L_2] and [M_2Cl_7L]- (M = Mo, Re; L = Ph_2Ppy, (Ph_2P)_2py)

Theoretical Studies on the M-M Bonding in Complexes [M_2Cl_4L_2] and [M_2Cl_7L]- (M = Mo, Re; L = Ph_2Ppy, (Ph_2P)_2py)
下载PDF
导出
摘要 The structures of complexes [MⅡ2Cl4L2] and [MⅢ2Cl7L]- (M = Mo, Re; L = Ph2Ppy, (Ph2P)2py) were calculated by using density functional theory (DFT) PBE0 method. Based on the optimized geometries, the natural bond orbital (NBO) analyses were carried out to study the nature of Re-Re and Mo-Mo bonds. The conclusions are as follows: the M-M distances in two-Ph2Ppy or (Ph2P)2py complexes [MⅡ2Cl4L2] are shorter than those in mono-Ph2Ppy or (Ph2P)2py complexes [MⅢ2Cl7L]- due to the double bridged N-C-P interactions. For singlet of all complexes, there is ReⅢ-ReⅢ or MoⅡ-MoⅡ quadruply bond in complex [Re2Cl7L]- or [Mo2Cl4L2], while only ReⅡ-ReⅡ or MoⅢ-MoⅢ triply bond in complex [Re2Cl4L2] or [Mo2Cl7L]-. The most stable spin state of 2 and 6, triplet, only contains triple ReⅢ-ReⅢ bond. Because the LPCl → BD*Re-Re delocalizations weaken the Re-Re bond, the distance of ReⅢ-ReⅢ quadruple bonds in [Re2Cl7L]- is slightly longer than that of ReⅡ-ReⅡ triple bonds in [Re2Cl4L2]. Moreover, due to the delocalizations from the lone pair electrons of the remaining P’ atom to the M-M antibonding orbitals, the M-M distance in (Ph2P)2py complexes is slightly longer than that in Ph2Ppy complexes. The structures of complexes [MⅡ2Cl4L2] and [MⅢ2Cl7L]- (M = Mo, Re; L = Ph2Ppy, (Ph2P)2py) were calculated by using density functional theory (DFT) PBE0 method. Based on the optimized geometries, the natural bond orbital (NBO) analyses were carried out to study the nature of Re-Re and Mo-Mo bonds. The conclusions are as follows: the M-M distances in two-Ph2Ppy or (Ph2P)2py complexes [MⅡ2Cl4L2] are shorter than those in mono-Ph2Ppy or (Ph2P)2py complexes [MⅢ2Cl7L]- due to the double bridged N-C-P interactions. For singlet of all complexes, there is ReⅢ-ReⅢ or MoⅡ-MoⅡ quadruply bond in complex [Re2Cl7L]- or [Mo2Cl4L2], while only ReⅡ-ReⅡ or MoⅢ-MoⅢ triply bond in complex [Re2Cl4L2] or [Mo2Cl7L]-. The most stable spin state of 2 and 6, triplet, only contains triple ReⅢ-ReⅢ bond. Because the LPCl → BD*Re-Re delocalizations weaken the Re-Re bond, the distance of ReⅢ-ReⅢ quadruple bonds in [Re2Cl7L]- is slightly longer than that of ReⅡ-ReⅡ triple bonds in [Re2Cl4L2]. Moreover, due to the delocalizations from the lone pair electrons of the remaining P’ atom to the M-M antibonding orbitals, the M-M distance in (Ph2P)2py complexes is slightly longer than that in Ph2Ppy complexes.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第9期1287-1294,共8页 结构化学(英文)
基金 the Natural Science Foundation of Guangdong Province (9151063101000037) Ministry of Education and Guangdong Province (2010B090400184) Program of Talent Introduction of Guangdong Province (C10133) Science and Technology Program of Guangzhou City (2011J4300063) Science and Technology Program of Guangdong Province (2010B060900007)
关键词 M-M Bonding DFT NBO M-M Bonding, DFT, NBO
  • 相关文献

二级参考文献11

  • 1陈兆星,李勤瑜,许旋,曾和平.5-[2′-氟-4′-溴-苯甲亚胺]-8-羟基喹啉铝的量子化学研究[J].高等学校化学学报,2007,28(2):338-341. 被引量:2
  • 2Farr J. P., Olmstead M. M., Baleh A. L.. J. Am. Chem. Soc. [J], 1980, 102:6654-6656.
  • 3Schiavo S. L. , Rotondo E. , Faraone F. , et al.. Organometallics[ J] , 1991, 10(5) : 1613-1620.
  • 4Kuang S. M. , Mak T. C. W. , Zhang Z. Z., et al.. Polyhedron[J], 1996, 15(19): 3417-3426.
  • 5Xu X. , Fang L. , Chen Z. X. , et al.. J. Organomet. Chem. [J], 2006, 691:1927-1933.
  • 6Stiitzer A. , Bissinger P. , Schmidbaur H. , et al.. Chem. Ber. [J] , 1992, 125:367-372.
  • 7Ditchfield R.. Mol. Phys. [J], 1974, 27:789-807.
  • 8Friseh M. J. , Tracks G. W. , Schlegel H. B. , et al.. Gaussian 03, Revision C. 02[ CP], Pittsburgh PA: Gaussian Inc. , 2003.
  • 9Carpenter J. E. , Weinhold F.. J. Mol. Struc. (Theochem.) [J] , 1988, 169:41-46.
  • 10Mendez L. A. , Jimenez .1. , Cerrada E. , et al.. J. Am. Chem. Soc. [J], 2005, 127(3) : 852-853.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部