期刊文献+

Algebra-Geometry of Piecewise Algebraic Varieties

Algebra-Geometry of Piecewise Algebraic Varieties
原文传递
导出
摘要 Algebraic variety is the most important subject in classical algebraic geometry. As the zero set of multivariate splines, the piecewise algebraic variety is a kind generalization of the classical algebraic variety. This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines. Algebraic variety is the most important subject in classical algebraic geometry. As the zero set of multivariate splines, the piecewise algebraic variety is a kind generalization of the classical algebraic variety. This paper studies the correspondence between spline ideals and piecewise algebraic varieties based on the knowledge of algebraic geometry and multivariate splines.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第10期1973-1980,共8页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. U0935004, 11071031 and 10801024) Fundamental Research Funds for the Central Universities (Grant Nos. DUT10ZD112, DUT11LK34) National Engineering Research Center of Digital Life, Guangzhou 510006, China
关键词 Piecewise algebraic varieties multivariate splines PARTITIONS algebraic geometry Piecewise algebraic varieties, multivariate splines, partitions, algebraic geometry
  • 相关文献

参考文献6

二级参考文献27

  • 1王仁宏,许志强.Estimation of the Bezout number for piecewise algebraic curve[J].Science China Mathematics,2003,46(5):710-717. 被引量:6
  • 2ZHU ChunGang & WANG RenHong School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China.Nther-type theorem of piecewise algebraic curves on quasi-cross-cut partition[J].Science China Mathematics,2009,52(4):701-708. 被引量:3
  • 3WANGRenhong ZHUChungang.Piecewise algebraic varieties[J].Progress in Natural Science:Materials International,2004,14(7):568-572. 被引量:5
  • 4Zhu, CG,Wang, RH.PIECEWISE SEMIALGEBRAIC SETS[J].Journal of Computational Mathematics,2005,23(5):503-512. 被引量:6
  • 5[1]Hartshorn,R. Algebraic Geometry. New York: Springer-Verlag,1977.
  • 6[2]Shi,X. Q. et al. Bezout's number for piecewise algebraic curves. BIT,1999,2: 339.
  • 7[3]Wang,R. H. The structural characterization and interpolation for multivariate splines. Acta Math. Sinica (in Chinese),1975,18: 91.
  • 8[4]Wang,R. H. Multivariate spline and algebraic geometry. Journal of Computational and Applied Mathematics,2000,121: 153.
  • 9[5]Wang,R. H. Multivariate Spline Functions and Their Applications. New York: Kluwer Pub.,2001.
  • 10[6]Wang,R. H. et al. An introduction to the piecewise algebraic curve. In: Mitsui,T.(Ed.),Theory and Application of Scientific and Technical Computing,RIMS,Kyoto University. 1997,196~205.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部