期刊文献+

The Cross-ratio Compactification of the Configuration Space of Ordered Points on

The Cross-ratio Compactification of the Configuration Space of Ordered Points on
原文传递
导出
摘要 A natural compactification of the virtual configuration space of N points on the Riemann sphere C is constructed by using cross-ratios. We show that this compactification is homeomorphic to the Bers' compactification of the virtual moduli space of a punctured Riemann sphere of type N. In particular, the system of global and explicit coordinates of this standard compactification is given by cross-ratios. A natural compactification of the virtual configuration space of N points on the Riemann sphere C is constructed by using cross-ratios. We show that this compactification is homeomorphic to the Bers' compactification of the virtual moduli space of a punctured Riemann sphere of type N. In particular, the system of global and explicit coordinates of this standard compactification is given by cross-ratios.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第10期2129-2138,共10页 数学学报(英文版)
基金 supported by Grants-in-Aid for Scientific Research (C) (Grant No. 23540202) Grant-in-Aids for Scientific Research (B) (Grant No. 20340030)
关键词 Cross-ratios configuration space planar domains with nodes Cross-ratios, configuration space, planar domains with nodes
  • 相关文献

参考文献9

  • 1Hubbard, J. H.: Teichmiiller Theory and Applications to Geometry, Topology, and Dynamics, Matrix Press, New York, 2006.
  • 2Imayoshi, Y., Taniguchi, M.: An Introduction to Teichmiiller Spaces, Springer-Verlag, Tokyo, 1992.
  • 3Constantinescu, C., Cornea, A.: Ideale Rnder Riemannscher Flachen, Ergeb. Math. Grenzgeb. (3), 32, Springer-Verlag, Berlin, 1963.
  • 4Loeb, P. A.: A minimal compactification for extending continuous functions. Proc. Amer. Math. Soc., 18, 282-283 (1967).
  • 5Abikoff, W.: On boundaries of Teichmiiller spaces and Kleinian groups: III. Acta Math., 134, 211 234 (1975).
  • 6Bers, L.: On spaces of Riemann surfaces with nodes. Bull. Amer. Math. Soc. (N.S.), 80, 1219-1222 (1974).
  • 7Buff, X., Fehrenbach, J., Lochak, P., et al.: Moduli paces of curves, mapping class groups and field theory, SMF/AMS Texts Monogr., 9, Amer. Math. Soc., Providence, RI, 2003.
  • 8Keel, S.: Intersection theory of moduli space of stable N-pointed curves of genus zero. Trans. Amer. Math. Soc.. 330. 545-574 (1992).
  • 9Gardiner, F. P., Lakic, N.: Quasiconformal Teichmiiller Theory, Math. Surveys Monogr., 76, Amer. Math. Soc., Providence, RI, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部