期刊文献+

基于序列模式的用户浏览行为提取与分析 被引量:2

User Browsing Behavior Extraction and Analysis Based on Sequence Pattern
下载PDF
导出
摘要 当今互联网所提供的功能和服务越来越多,Web内容也越来越丰富,移动应用越来越流行。然而,复杂的Web服务应用对用户提出了更高的要求,给用户浏览带来了很多问题,很多时候用户会感到无所适从。文中提出基于用户浏览序列模式的用户行为提取与分析方法。该方法可以分为浏览模式分析和用户聚类两部分。在浏览模式分析时,首先根据用户行为数据得到浏览序列,然后运用序列模式挖掘PrefixSpan算法获取用户习惯的浏览模式,最后把分析获取的用户浏览模式应用到Web浏览中,为不同的用户需求提供个性化的服务。在用户聚类时,运用层次聚类方法按照浏览模式的相似性对用户进行聚类,以分析用户的不同属性(如年龄、职业、学历等)对用户浏览模式的影响。实验结果表明,文中采用的PrefixSpan算法和层次聚类方法在用户浏览模式分析和研究方面具有很好的可行性和有效性。 Nowadays, intemet provides more and more application and services, there are more and more contents on Web, and mobile applications develop more and more quickly. Meanwhile, the more sophisticated Web services applications need higher quality of users. Many times some users may feel confused in those Web services. It presents the sequence based on user access patterns for user behavior extraction and analysis methods. The method can be divided into two parts of the browse mode analysis and user clustering. For browse mode analysis, first based on user behavior data get navigation sequence;Then the sequential pattern mining algorithm, so-called PrefixSpan, is used in getting user browsing pattern ; Finally applies user browsing pattern to Web services, and provides personalized services to different users. For user clustering, a hierarchical clustering method is used for splitting user into different categories. The impact of differ- ent attributes of user I such as age, occupation, education ) to user clustering is researched. Experimental results show that the PrefixSpan algorithm and hierarchical clustering method used in the browse mode analysis has a good feasibility and validity in this paper.
出处 《计算机技术与发展》 2012年第9期9-12,17,共5页 Computer Technology and Development
基金 上海市重点学科建设项目(J50103) 上海市教育委员会科研创新项目资助(重点)(11ZZ85) 上海市远程教育集团学科研究课题(JF1208)
关键词 用户浏览行为分析 序列模式 层次聚类算法 个性化服务 浏览模式 user behavior analysis sequential patterns hierarchical clustering algorithm personalized service browsing pattern
  • 相关文献

参考文献13

  • 1Chen Ling,Bhowmick S S,Nejdl W. COWES:Web user clustering based on evolutionary web sessions[ J]. Data & Knowledge Engineering,2009,68(10) :867-885.
  • 2Kaur P,Garg R,Singh R,et al. Research on the Application of Web Mining Technique Based on XML for Unstructured Web Data Using LINQ [ J]. Advanced Materials Research,2011, 403-408:1062-1067.
  • 3Liu Bing,Mobasher B,Nasraoui 0. Web Usage Mining[ M]./ Data - Centric Systems and Applications. [ s. I.]. [ s. n.]. 2011.
  • 4于飞,丁华福,姜伦.Web日志挖掘中数据预处理技术的研究[J].计算机技术与发展,2010,20(5):47-50. 被引量:9
  • 5Bonchi F,Giannotti F,Gozzi C. Web log data warehousing and mining for intelligent web caching[ J]. Data & Knowledge Engineering ,2001,39(2) :165-189.
  • 6肖国强,肖轶.一种从Web日志中挖掘访问模式的新算法[J].华中科技大学学报(自然科学版),2004,32(5):70-72. 被引量:7
  • 7施建生,伍卫国,陆丽娜,Yang Yiling,杨怡玲.Web日志中挖掘用户浏览模式的研究[J].西安交通大学学报,2001,35(6):621-624. 被引量:34
  • 8Wang Weinan,Zaiane 0 R. Clustering Web Sessions by Sequence Alignment [ C]./Proceeding of the 13th International Workshop on Database and Expert Systems Applications. Canada: IEEE,2002.
  • 9Srivastava J,Cooley R,Deshpande M. Web Usage Mining:Discovery and Applications of Usage Patterns from Web Data [J]. ACM SIGKDD Explorations Newsletter,2000,1 (2) :12-23.
  • 10彭鸿儒,余小鹏.Web客户端用户行为数据收集研究[J].软件导刊,2011,10(2):155-157. 被引量:2

二级参考文献32

  • 1陈文庆,许棠.关联规则挖掘Apriori算法的改进与实现[J].微机发展,2005,15(8):155-157. 被引量:21
  • 2吴琪.一种基于客户端的用户浏览行为的采集方法[J].长春师范学院学报(自然科学版),2005,24(4):60-62. 被引量:4
  • 3殷贤亮,张为.Web使用挖掘中的一种改进的会话识别方法[J].华中科技大学学报(自然科学版),2006,34(7):33-35. 被引量:27
  • 4Han Jiawei,KamberM.数据挖掘:概念与技术[M].北京:机械工业出版社,2006.
  • 5熊忠阳,周亚峰.Web访问挖掘的预处理技术的研究[J].计算机技术与发展,2007,17(8):11-14. 被引量:19
  • 6Srivastava J,Cooley R,Deshpande M,et al.Web Usage Mining:Discovery and Applications of Usage Patterns from Web Data[J].SIGKDD Explorations,2000,1(2):12-23.
  • 7Facca M,Lanzi P L.Mining interesting knowledge from weblogs:A survey[J].Data and Knowledge Engineering,2005,53(3):225-241.
  • 8He D,Goker A.Detecting session boundaries from Web user logs[C]∥Proceedings of the 22nd Annual Colloquium of IR Research.Cambridge:[s.n.],2005:57-66.
  • 9Cooley R,Mobasher B,Srivastava J.Data Preparation for Mining World Wide Web Browsing Patterns[J].Knowledge and Information System,1999,1(1):32-40.
  • 10Savasere A, Omieeinski E, Navathe S. An Efficient Algorithm for Mining Association Rules In Large Databases [ C ]//Proceedings of the 21st International Conference on Very Large Databases. New York : ACM, 1995:432-443.

共引文献88

同被引文献9

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部