期刊文献+

一种基于偏转角度的AAM人脸特征点定位方法 被引量:1

An AAM Localization Method for Human Facial Features Based on Deflection Angle
下载PDF
导出
摘要 对有偏转角度的人脸特征点定位来说,拟合初始位置和模型的角度对人脸特征点定位效果有很大的影响。而传统的AAM(Active Appearance Models)人脸特征定位方法没有具体考虑这一问题,对有偏转角度的人脸特征点的定位准确率和速度并不理想。为解决这个问题,文中提出了一种利用两眼中心坐标和嘴中心坐标来计算人脸偏转角度,根据坐标和角度确定拟合初始位置和模板的方法。用Adaboost和YCbCr对人脸进行预检测,根据找到的特征区域计算偏转角,用反向算法结合该角度的模板进行特征点定位。实验的测试结果表明本方法对有偏转角度的人脸的特征点定位比传统方法在准确度和速度上都有了提高。 For face feature localization that has deflection angle, model angle and the initial position of fitting have a great effect on face feature localization. However, traditional AAM ( Active Appearance Models) face feature localization method do not think about this problem, the location accuracy and speed for the face with deflection angle feature points is not ideal. A method based on deflection angle was proposed in this paper to solve this problem, a kind of method is put forward. This method uses two eyes and mouth center coordinates to calculate face deflection angle and find the initial position of fitting and templates. Adaboost algorithm and facial skin proper- ties in YCbCr color space are applied to pre-detection of facial features in the images, according to the features area that is found in pre -detection the deflection angle was calculated, inverse compositional algorithm combined with the template of the angle were used to locate feature points. Experimental result shows that for feature points localization of face which have deflection angle, this method are improved than traditional method in both accuracy and speed.
出处 《计算机技术与发展》 2012年第9期25-28,共4页 Computer Technology and Development
基金 陕西省教育专项科研项目(09JK518)
关键词 主动表现模型 偏转角 人脸特征点 反向组合算法 AAM deflection angle human facial features inverse compositional algorithm
  • 相关文献

参考文献12

  • 1Edwards G J,Taylor C J,Cootes T F. Interpreting face images using active appearance models [ C]./3rd IEEE International Conference on Automatic Face and Gesture Recognition Proceedings. Washington D C, USA: IEEE Computer Society, 1998:300-305.
  • 2Blanz V,Vetter T. A morphable model for the synthesis of 3D faces [ C]./Proceeding of SIGGRAPH. New York, NY, USA :ACM Press/Addison-Wesley Publishing Co,1999:187-194.
  • 3Matthews I,Baker S. Active appearance models revisited[ J]. International Journal of Computer Vision,2004,60 ( 2) : 135-164.
  • 4牛星,席志红,金子正秀.基于改进AAM的人脸特征点提取[J].应用科技,2011,38(4):35-38. 被引量:3
  • 5呼月宁,张艳宁,朱宇,崔瑞.AAM在多姿态人脸特征点检测中的应用[J].计算机工程与应用,2010,46(12):161-165. 被引量:12
  • 6Yang J. Two-dimensional PCA: A New Approach to Appearance-based Face Representation and Recognition [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,26(1) :131-137.
  • 7蔡雪君,谢松云,张波.一种改进的利用五官特征的人脸识别方法[J].计算机仿真,2009,26(11):228-230. 被引量:7
  • 8Baker S,Matthews I. Lucas - Kanade 20 years on : a unifying framework [ J]. International Journal of Computer Vision,2004,56(3):221-255.
  • 9武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 10Jeng S H,Liao H Y M,Han C C,et al. Facial feature detection using geometrical face model: an efficient approach [ J]. Pattern Recognition, 1998,31(3) :273-282.

二级参考文献47

  • 1李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 2王磊,邹北骥,彭小宁,周凌.一种改进的提取人脸面部特征点的AAM拟合算法[J].电子学报,2006,34(8):1424-1427. 被引量:13
  • 3侯云舒,付中华,张艳宁,赵荣椿.基于改进ASM的人脸特征点提取[J].计算机应用研究,2006,23(11):255-257. 被引量:8
  • 4Cooper D H,Cootes T F,Taylor C J ,et al. Active shape models - their training and application[J ]. Computer Vision and Image Understanding, 1995,61 ( 1 ):38 - 59.
  • 5Cootes T F, Edwards G J, Taylor C J. Active Appearance Models[ C]//In Burkhardt H, Neumann B, editors. 5th European Conference on Computer Vision. Berlin: Springer, 1998: 484 - 498.
  • 6Beier T,Neely S. Feature-Based Image Meramorphosis[J ]. Computer Graphics, 1992,26 (2) : 35 - 42.
  • 7Lee Tong-Yee,Lin Young- Ching,Lin Leeween, et al. Fast Feature-Based Metamorphosis and Operator Design [ J ]. Computer Graphics Forum, 1998,17 (3) : 15 - 22.
  • 8J Yang, et al. Two - Dimensional PCA : A New Approach to Appearance- Based Face Representation and Recognition[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004 , 26 (1) :131 -137.
  • 9Y Nara, J Yang and Y Suematsu. Face Recognition Using Improved Principal Component Analysis [ C ], Proc. International Symposium on Micromechatronics and Human Science, 2003. 77 - 82.
  • 10H Yu and J Yang. A Direct LDA Algorithm for High - Dimensional Data with Application to Face Recognition[ J]. Pattern Recognition, 2001,34(10) : 2067 - 2070.

共引文献93

同被引文献14

  • 1Li S Z, Jain A K. Handbook of face recognition [ M ]. Berlin : Springer, 2011.
  • 2Martinez A, Du S. A model of the perception of facial expres- sions of emotion by humans : research overview and perspec- tives[ J ]. JMLR,2012,13 : 1589-1608.
  • 3Ekman P, Friesen W. Facial action coding system [ M ]. Palo Alto : Consulting Psychologists Press, 1978.
  • 4Cootes T F,Taylor C J,Cooper D H,et al. Active shape mod- els- their training and application [ J ]. Computer Vision and Image Understanding, 1995,61 ( 1 ) :38-59.
  • 5Cootes T F, Edwards G J ,Taylor C J. Active appearance mod- els[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2001,23 ( 6 ) :681-685.
  • 6Cristinacce D,Cootes T F. Feature detection and tracking with constrained local models [C]//Proc of BMVC. Edinburgh: BMVA ,2006:929-938.
  • 7Dollar P, Welinder P, Perona P. Cascaded pose regression [ C]//Proc of IEEE conference on computer vision and pat- tern recognition. [ s. 1. ] : IEEE ,2010 : 1078-1085.
  • 8Sun Y, Wang X,Tang X. Deep convolutional network cascade for facial point detection [ C]//Proc of IEEE conference on computer vision and pattern recognition. [ s. I. ] :IEEE,2013: 3476-3483.
  • 9Zhou Y,Zhang W,Tang X ,et al. A Bayesian mixture model for multi-view face alignment [ C ]//Proc of IEEE conference on computer vision and pattern recognition. [ s. 1. ] :IEEE,2005.
  • 10Cao X, Wei Y, Wen F, et al. Face alignment by explicit shape regression[ C ]//Proc of IEEE conference on computer vision and pattern recognition. [ s. 1. I :IEEE,2012:177-190.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部