期刊文献+

Positivity of Matrices with Generalized Matrix Functions 被引量:1

Positivity of Matrices with Generalized Matrix Functions
原文传递
导出
摘要 Using an elementary fact on matrices we show by a unified approach the positivity of a partitioned positive semidefinite matrix with each square block replaced by a compound matrix, an elementary symmetric function or a generalized matrix function. In addition, we present a refined version of the Thompson determinant compression theorem. Using an elementary fact on matrices we show by a unified approach the positivity of a partitioned positive semidefinite matrix with each square block replaced by a compound matrix, an elementary symmetric function or a generalized matrix function. In addition, we present a refined version of the Thompson determinant compression theorem.
作者 Fuzhen ZHANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第9期1779-1786,共8页 数学学报(英文版)
基金 Supported by NSU FCAS Faculty Development Funds 2011
关键词 DETERMINANT generalized matrix function PERMANENT TRACE Determinant, generalized matrix function, permanent, trace
  • 相关文献

参考文献24

  • 1Zhang, F.: Matrix Theory: Basic Results and Techniques, Springer, New York, 2nd ed., 2011.
  • 2Hua, L.-K.: Inequalities involving determinants (in Chinese). Acta Mathematica Sinica, 5~4), 463-470 (1955); Translated into English: Transl. Amer. Math. Soc. Set. II, 32, 265-272 (1963).
  • 3de Pillis, J.: Transformations on partitioned matrices. Duke Math. J., 36(3), 511-515 (1969).
  • 4de Pillis, J.: Inequalities for partitioned positive semdefinite matrices. Linear Algebra Appl., 4, 79-94 (1971).
  • 5de Pillis, J.: Linear operators and their partitioned matrices. Archiv der Mathernatik, 22, 79-84 (1971).
  • 6Marcus, M., Katz, S: M.: Matrices of Schur functions. Duke Math. J., 36, 343-352 (1969).
  • 7FitzCerald, C. H., Horn, R. A.: On fractional Hadamard powers of positive definite matrices. J. Math. Anal. Appl., 61, 633-642 (1977).
  • 8Merris, R.: Trace functions I. Duke Math. J., 38, 527-530 (1971).
  • 9de Pillis, J.: Grassmann algebras as Hilbert space. J. Algebra, 10, 485-500 (1968).
  • 10de Pillis, J.: Generalized elementary symmetric functions and quaternion matrices. Linear Algebra Appl., 4, 55-69 (19"71).

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部