期刊文献+

Vertex-antimagic Labelings of Regular Graphs

Vertex-antimagic Labelings of Regular Graphs
原文传递
导出
摘要 Let G = (V, E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V(G) t2 E(G) onto the set of consecutive integers 1, 2,... ,p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f(x) assigned to the vertex x together with all values f(xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0, 1,..., r + 1. Let G = (V, E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V(G) t2 E(G) onto the set of consecutive integers 1, 2,... ,p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f(x) assigned to the vertex x together with all values f(xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0, 1,..., r + 1.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第9期1865-1874,共10页 数学学报(英文版)
基金 Supported by Slovak VEGA Grant 1/0130/12 Higher Education Commission Pakistan (Grant No.HEC(FD)/2007/555) the Ministry of Education of the Czech Republic (Grant No. MSM6198910027)
关键词 Super vertex-antimagic total labeling vertex-antimagic edge labeling regular graph Super vertex-antimagic total labeling, vertex-antimagic edge labeling, regular graph
  • 相关文献

参考文献4

二级参考文献78

  • 1Wallis, W. D.: The smallest regular graphs without one-factors. Ars Combin., 11, 295 300 (1981).
  • 2Zhao, C.: The disjoint 1-factors of (d,d + 1)-graphs. J. Combin. Math. Combin. Comput., 9, 195-198 (1991).
  • 3Tutte, W. T.: The factorizations of linear graphs. J. London Math. Soc., 22, 459-474 (1947).
  • 4Volkmann, L., Zingsern, A.: On the order of almost regular bipartite graphs without perfect matchings. Australas. J. Combin., 4,2, 165-170 (2008).
  • 5Caccetta, L., Mardiyono, S.: On the existence of almost-regular-graphs without one-factors. Australas. J. Combin., 9, 243- 260 (1994).
  • 6Volkmann, L.: On the size of odd order graphs with no almost perfect matching. Australas. J. Combin., 29, 119-126 (2004).
  • 7Klinkenberg, S., Volkmann, L.: On the order of almost regular graphs without a matching of given size. Australas. J. Combin., 34, 187- 194 (2006).
  • 8Klinkenberg, S., Volkmann, L.: On the order of certain close to regular graphs without a matching of given size. Czecheslovak Math. J., 57, 907-918 (2007).
  • 9Klinkenberg, S., Volkmann, L.: On the order of close to regular graphs without a matching of given size. Ars Combin., 85, 99- 106 (2007).
  • 10Berge, C.: Sur le couplage maximum d'un graphe (in French). C. R. Acad. Sci. Paris, 247, 258-259 (1958).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部