期刊文献+

贝叶斯方法在水环境系统不确定性分析中的应用述评 被引量:14

A Review of Bayesian Methods and Their Application in Uncertainty Analysis of Water Environmental System
下载PDF
导出
摘要 贝叶斯方法是解决不确定问题的新思路,评述了以贝叶斯公式、贝叶斯统计推断及贝叶斯网络为基础的贝叶斯方法在水质评价、水环境模型参数识别、水环境管理及风险决策方面的应用。贝叶斯公式可很好地解决水质评价中监测数据、水质级别、水质标准等蕴含的不确定信息。贝叶斯统计推断耦合水环境模型为模型参数识别提供新方法,其应用难点为贝叶斯后验分布的计算。介绍了后验分布的离散贝叶斯算法、传统及改进MCMC算法。贝叶斯网络在水质评价、模型预测、水环境管理及风险决策中可同时考虑多个变量的综合作用,得到影响管理决策各因素的不确定性信息,为水环境的管理决策提供科学依据。 Bayesian methods provide new ideas for solving uncertainty problems in Water environmental system. Several Bayesian methods, such as Bayesian formula, Bayesian statistical inference and Bayesian networks, are commented on applying to water quality evaluation, parameters identification of water environment model, water environment management and risk decision making. Bayesian formula can solve uncertain information of monitoring data, water quality grade and standard in water quality evaluation. Bayesian statistical inference coupling the water environmental model provides a new approach for model parameter identification. The posterior distribution calculation is the key of application of Bayes Jan statistical inference. The Bayesian discrete algorithms based posterior distribution, the traditional and improved MC- MC algorithms are introduced. The application of Bayesian networks to water quality assessment, model prediction, water environment management and risk decision making can take multiple variable into account simultaneously. Then the uncertain information of factors influencing on management decision making is obtained, which provides the scientific basis for water environmental management decision making.
作者 黄凯 张晓玲
出处 《水电能源科学》 北大核心 2012年第9期47-49,216,共4页 Water Resources and Power
基金 国家水体污染控制与治理科技重大专项资助项目(2008ZX07102-001) 北京市自然科学基金资助项目(9122017) 国家自然科学基金资助项目(51104021)
关键词 贝叶斯方法 贝叶斯网络 不确定性 水质评价 参数识别 风险决策 Bayesian method Bayesian networks uncertainty water quality evaluation parameter identification risk decision making
  • 相关文献

参考文献14

二级参考文献72

共引文献145

同被引文献216

引证文献14

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部