摘要
阐述了潮流方程多解性的意义 ,作为可能引起电压失稳和崩溃的原因之一 ,从数学上解决这个问题是十分困难的。着重介绍了近年来发展起来的符号计算 ,特别是有关 Groebner基方法、吴—方法以及数值分析中的同伦算法 ,它们可能是探索这个问题的有效途径。静态潮流方程的快速求解算法仍然是一个很具挑战性的课题 ,为此介绍了非精确 Newton法。
In this paper. the multi--solution phenomenon of a static power flow equation is emphasized on, which could be thereason of the voltage instability or collapse in an electric power network. As a possible approach for exploring thisphenomenon. symbolic computation+ say. Groebner method and Wu--method are introduced. Numerical homotopy algorithmis mentioned as well. For the purpose of real-time of power systems effective algorithms for solving power flow equations arestill a defiant problem we are facing. Up-to--dated algorithms, for example. inexact Newton iterative, nonlinear conjugategradient--like methods as well as nonsmooth true region method are described briefly.This project is supported by National Key Basic Research Special Fund of China (No. G1998020306) and National NaturalScience Foundation of China (No. 19871047).
出处
《电力系统自动化》
EI
CSCD
北大核心
2000年第10期1-4,63,共5页
Automation of Electric Power Systems
基金
国家重点基础研究专项经费 !(G1 9980 2 0 30 6 )
国家自然科学基金资助项目 !(1 9871 0 47)
关键词
潮流计算
静态潮流
多解性
快速算法
电网
power flow computation
inexact Newton iteratlve
nonlinear CG-like methods
symbolic computation