期刊文献+

两自由度单边刚性约束碰撞系统的混沌演化 被引量:3

Chaos evolution of two-degree-of-freedom impact system with unilateral rigid constraints
下载PDF
导出
摘要 建立了一类两自由度单边刚性约束碰撞系统的力学模型,通过理论分析和数值仿真结合,推导了系统周期运动的解析解和Poincaré映射,分析了系统周期运动的稳定性及系统在适当参数下发生分岔与混沌的现象,为实际动力学系统优化提供了理论依据。 A kind of mechanical model of two-degree-of-freedom impact system with unilateral rigid constraints is considered in this paper. Through a combination of theoretical analysis and numerical simulation, analytical solution and Poineare map- ping of the periodic motion of the system are deduced, the stability of periodic motion, the phenomenon of bifurcation and cha- os in the proper parameters of the system are analyzed. It provides a theory basis for practical dynamics system optimization.
作者 苏芳 王晨升
出处 《机械研究与应用》 2012年第4期69-71,共3页 Mechanical Research & Application
关键词 碰撞振动 POINCARÉ映射 分岔 混沌 vibro-impact Poincare map bifurcation chaos
  • 相关文献

参考文献4

二级参考文献16

  • 1胡海岩.分段光滑机械系统动力学的进展[J].振动工程学报,1995,8(4):331-341. 被引量:34
  • 2Jianhua Xie,Wangcai Ding,E.H. Dowell,L. N. Virgin.Hopf-flip bifurcation of high dimensional maps and application to vibro-impact systems[J].Acta Mechanica Sinica,2005,21(4):402-410. 被引量:9
  • 3[1]Natsiavas S.Dynamics of multiple-degree-of-freedom oscillators with colliding components.Journal of Sound and Vibration,1993,165:439 ~ 453
  • 4[2]Ivanov AP.Impact oscillations:linear theory of stability and bifurcations.Journal of Sound and Vibration,1993,178:361 ~ 378
  • 5[4]Luo GW,Xie JH.Hopf bifurcation of a two-degree-of-freedom vibro-impact system.Journal of Sound and Vibration,1998,213(3):391 ~408
  • 6[8]Ding WC,Xie JH,Sun QG.Interation of Hopf and period doubling bifurcations of a vibro-impact system.Journal of Sound and Vibration,2004,275:27~ 45
  • 7谢建华,全国第3届运动稳定性与振动学术会议论文集,1992年
  • 8舒周仲,Acta Mech Sin,1991年,7卷,4期,369页
  • 9Tung P C,J Vibration Acoustics,Stress and Reliability in Design,1988年,110卷,4期,193页
  • 10Wan Y H,SIAM J Appl Math,1978年,34卷,1期

共引文献85

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部