期刊文献+

λ_4-最优二部图的领域交条件

Neighborhood Intersection Conditions for λ_4-Optimality in Bipartite Graphs
下载PDF
导出
摘要 文章给出了二部图是λ4-最优的一个领域交条件.设n为一个不小于8的正整数,令G=(X∪Y,E)为一个n阶二部图且ξ4(G)≤n/2.若G有一个饱和X或Y中所有顶点的匹配且对任意的u,v∈X和u,v∈Y都有|N(u)∩N(v)|≥4,则G是λ4-最优的. We mainly study the neighborhood intersection conditions for λ_4-optimality inbipartite graphs. Let n≥8 be an integer and let G=(XUY,E) be a bipartite graph of order n and n 4(G)≤n/2, If G has a matching that saturates every vertex in X or every vertex in Y and [N(u) [/ N(v) ]≥4 for any u,v∈Y or u,v∈X,then G is λ_4- optimal.
出处 《太原师范学院学报(自然科学版)》 2012年第2期11-15,共5页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 二部图 4-限制边连通度 λ4-最优的 匹配 bipartite graph λ_4-restricted edge connectivity λ_4-optimal matching
  • 相关文献

参考文献8

  • 1ghang Zhao, Yuan Jinjiang. A proof of an inequality concerning k-restricted edge connectivity[J]. Discrete Mathematics, 2005, 304(1-3) :128-134.
  • 2王应前.图的高阶边连通性和网络的可靠性比较[D].上海:上海交通大学,200l.
  • 3Fiol M A. On super-edge-connected digraphs and bipartite digraphs[J]. Journal of Graph Theory, 1992,16(6) : 545-555.
  • 4Volkmann Lutz. Degree sequence conditions for super-edge-connected graphs and digraphs[J]. Ars Combinat-oria, 2003,67: 237-249.
  • 5Shang Li, Zhang Heping. Sucient conditions for graphs to be 0-optimal and super 0[J]. Networks, 2007,49 (3) . 234-242.
  • 6Yuan Jun,Liu Aixia,Wang Shiying. Sucient conditions for bipartite graphs to be super-k-restricted edge connected[J]. Dis- crete Mathematics, 2009,309 (9) : 2886-2896.
  • 7李鑫,高敬振.二部图λ_3最优性的充分条件[J].山东科学,2009,22(6):1-5. 被引量:1
  • 8Bondy J A,Murty U S R. Graph theory with applications[M]. New York:The Macmillan Press Ltd, 1976.

二级参考文献9

  • 1王应前.图的三阶边连通度的优化问题[J].中国科学(A辑),2006,36(4):369-377. 被引量:5
  • 2BOLLOBAS B. Modem Graph Theory [ M ]. New York :Springer-Verlag, 1998.
  • 3ESFAHANIAN A H, HAKIMI S L. On Computing a Conditional Edge Connectivity of a Graph[ J ]. Inf Process Letter, 1988,27:195 - 199.
  • 4ESFAHANIAN A H. Generalized Measures of Fault Tolerance with Application to N-cube Net-works [ J ]. IEEE Trails Comput, 1989,38 : 1586 - 1591.
  • 5BONSMA P, UEFFING N,VOLKMANN L. Edge-cuts Leaving Components of Order at Least Three[ J ]. Discrete Math,2002,256: 431 - 439.
  • 6ZHANG Z. Sufficient Conditions for Restricted-Edge-Connectivity to be Optimal[ J ]. Discrete Math ,2007,307:2891 -2899.
  • 7SHANG L,ZHANG H P. Degree Conditions for Grahs to be λ3-optimal and Super-λ3 [ J]. Discrete Math,2009,309:3336 -3345.
  • 8YUAN J, LIU A X, WANG S Y. Sufficient Conditions for Bipartite Graphs to be Super-k-Restricted Edge Connected [ J ]. Discrete Math,2009,309:2886 - 2896.
  • 9BONDY J A, MURTY U S R. Graph Theory with Applications [ M ]. New York : Macmillan, 1976.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部