期刊文献+

简单多智能体进化算法求解高维数值优化问题

Simple Multi-agent Evolutionary Algorithm for High Dimensional Numerical Optimization Problems
下载PDF
导出
摘要 为解决高维无约束数值优化问题,提出了一种新的利用智能体寻优的进化算法:简单多智能体进化算法(SimpleMulti-Agent Evolutionary Algorithm,SMAEA)。算法在各世代中均从单个智能体出发进行进化,该智能体代表了待优化函数的一个候选解,它通过自翻转算子加速寻优,并通过自学习过程进化为更好的智能体。在自学习过程中,对原有智能体执行局部搜索算子以产生一个环状多智能体系统,并通过交叉翻转、正交交叉、变异等操作使智能体不断改进。对标准测试函数的仿真实验表明,当问题维数从20增至1,000时,该算法能以较少的评价次数收敛到全局最优值。 An evolutionary Mgorithm (Simple Multi-agent Evolutionary Algorithm, SMAEA) is proposed for high dimensional unconstrained numerical optimization problems. During the every generation of SMAEA, the evolution always starts from one agent, which represents a candidate solution to the optimization problem in hand. The agent accelerates the optimization process by using self-flipping operator, and subsequently evolves into a better one through a self-learning process, where a multi-agent system with ring topology is produced after the local search operator is executed on the original agent and the agent is then improved through op- erators including cross-flipping, orthogonal crossover and mutation. Tests on benchmark problems show that when the dimensions are increased from 20 to 1,000, the algorithm can find the good solutions with a small number of function evaluations.
出处 《科技视界》 2012年第23期20-24,152,共6页 Science & Technology Vision
基金 国家自然科学基金资助项目(61003199) 中央高校基本科研业务费专项资金资助项目(K50510020015 K5051202019)
关键词 优化 数值优化 进化算法 智能体 多智能体 Optimization Numerical optimization Evolutionary algorithm Agent Multi-agent, ~:
  • 相关文献

参考文献9

二级参考文献28

  • 1石纯一,王克宏,王学军,康小强,罗翊,胡军.分布式人工智能进展[J].模式识别与人工智能,1995,8(A01):72-92. 被引量:18
  • 2Yang Kun,计算机科学,1999年,26卷,9期,30页
  • 3Rao A S,Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-9,1995年,312页
  • 4Goldberg.Genetic algorithms in search,optimization,and machine learning [M].Addison-Wesley,Reading,MA,1989.
  • 5Dongcheng Hu,Rui Jiang,Yupin Luo.An adaptive classifier system tree for extending genetics-based machine learning in dynamic environment [A].Proceedings of AROB′99[C].Japan:AROB,1999.
  • 6K Y Szeto,K H Cheung.Multiple time series prediction using genetic algorithms optimizer [A].Proc.of the Int'l.Symposium on Intelligent Data Engineering and Learning [C].Hong Kong,IDEAL,1998.
  • 7R Tanese.Distributed genetic algorithms [A].Proc.of 3rd International Conference on Genetic Algorithm,Lawrence Erlbaum Associates [C].Hillsdale,N J:ICGALEA1989.434-439.
  • 8Muhlenbein H,Schomish M,Born J.The parallel genetic algorithm as function optimizer [J].Parallel Computing,1991,17:619-632.
  • 9J H Nang.A simple parallelizing scheme of genetic algorithm on distributed-memory multiprocessors [J].International Journal of High Speed Computing,1994,6(3):451-474.
  • 10K Y Szeto,K H Cheung,S P Li.Effects of dimensionality on parallel genetic algorithms [A].Proc.of the 4th Int'l Conf.on Information System,Analysis and Synthesis [C].Orlando,Florida,USA:1998.

共引文献365

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部