期刊文献+

一种基于高斯混合模型的红外图像自适应均衡和对比度增强算法 被引量:1

An Automatic Equalization and Contrast Enhancement Algorithm for Infrared Image Based on Gaussian Mixture Modeling
下载PDF
导出
摘要 从红外图像的特性出发,分析了红外图像的直方图、噪声、分辨率及对比度等本质属性,在此基础上,针对红外图像信噪比高、对比度低的缺点,以高斯混合模型的参数设想和高斯分布的特定规律来模拟红外图像的像素分布和动态区间,通过对分割到高斯混合模型后的图像信息进行相应的变换,来实现对红外图像的自适应均衡和对比度增强处理。实验效果表明,图像亮度和对比度增强明显,并很好地保留和增强了图像细节,整幅图像的视觉效果得以显著改善,达到了图像增强的预期目的。 The human eye is not sensitive to small variations around dense data but is more sensitive to widely scattered fluctuations. Thus, in order to dense data with low standard deviation should be ard deviation should be compacted. This retained. In order to achieve this, we use increase the contrast while retaining image details, dispersed, where as scattered data with high stand- operation should be the GMM to partiti done so that the gray-level distribution is on the distribution of the input image into a mixture of different Gaussian components, then transforming the algorithm according to the purpose of image enhancement
出处 《重庆理工大学学报(自然科学)》 CAS 2012年第8期46-53,共8页 Journal of Chongqing University of Technology:Natural Science
基金 “十二五”国防预研项目(0404040604)
关键词 自适应均衡 对比度增强 主导高斯成分 正态分布 automatic equalization contrast enhancement dominant Gaussian component normal distribution
  • 相关文献

参考文献11

  • 1WANG Bing-jian, LIU Shang-qian, LI Qing, et al. A real- time contrastenhancement algorithm fbr infrared images based on plateauhistogram[ J]. Infrared Physics & Technol- ogy,2006(48) :125 - 128.
  • 2王春勇,周建勋,胡江华.红外图像特征分析与模拟[J].红外技术,1996,18(3):14-18. 被引量:5
  • 3Turgay Celik, Tardi Tjahjadi, Senior Member. Automatic Image Equalization and Contrast Enhancement Using Ganssian Mixture Modeling [ J ]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2012,21 ( 1 ) : 145 - 156.
  • 4吉书鹏,丁晓青.可见光与红外图像增强融合算法研究[J].红外与激光工程,2002,31(6):518-521. 被引量:5
  • 5陈洪,常青,郭天天,等.一种有效的实时红外图像增强算法研究[C]//第十一届全国信号处理学术年会(CCSP-2003)论文集.大连:出版者不详,2003.
  • 6Chen S D, Ramli A. Minimum mean brightness error bi- histogramequalization in contrast enhancement [ J ]. IEEE Trans Consum Electron,2003,49(4) :1310-1319.
  • 7Vichers V E. Plateau equalization algorithm for real - timedisplay of highquality infrared imagery[J]. Society of Pho- to-Optical InstrumentationEngneefs,1996 ,35 :46 -49.
  • 8Duda R O, Hart P E, Stork D G. Pattern Classification [ M ]. NewYork : Wiley-Interscience ,2000.
  • 9Figueiredo M, Jain A. Unsupervised learning of finite mixturemodels[ J ]. IEEE Trans. Pattern Anal Mach In- te11,2002,24 (3) : 381 - 396.
  • 10Reynolds D, Rose R. Robust text-independent speaker identificationusingGaussian mixture speaker models [ J ]. IEEE Trans SpeechAudio Process, 1995,3:72- 83.

二级参考文献6

  • 1郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:157
  • 2Dee Fiyan, Richard Tinkler. Night pilotage assessment of image fusion[A]. SPIE [C]. 1995, 2465.52-67.
  • 3William K Krebs,Dean A Scribner. Beyond third generation: a sensor fusion targeting FLIR pod for the F/A-18[A]. SPIE [C]. 1998, 3376.129-140.
  • 4Toet A, Ijspeert J K, Waxman A M, et al. Fusion of visible and thermal imagery improves situational awareness[A]. Elsevier[C]. 1997.85-95.
  • 5Ulug M E, Claire L McCullough. Feature and data level fusion of infrared and visual images[A]. SPIE Conference on Sensor Fusion :Architectures, Algorithms and Applications Ⅲ[C]. Orlando,Florida.1999, 3719.312-318.
  • 6Sammon, J W. A nonlinear mapping algorithm for data structure analysis[J]. IEEE Trans Computers, 1969,C-18(5): 401-409.

共引文献17

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部