摘要
针对复杂过程的参量聚类问题,提出一种基于粒子群优化算法的聚类方法,阐述了聚类算法的基本思路。通过对过程煅烧温度和煅烧转速二维数据的聚类仿真研究,证明该算法在类似过程参量聚类中的实用性能。对粒子群优化算法的聚类特性及参数设置进行了详细的分析,并将其与前期人工免疫聚类结果进行对比,提出了算法的改进方案。
The paper adopts the Particle Swarm Optimization (PSO) to solve the parameters clustering problem of complex processes. The basic mechanism of PSO is presented in the paper. The clustering simulation on tempera- tures and rotation speeds of the calcination process verifies the practicability of PSO in parameters clustering of sim- ilar complex processes. The clustering features and parameters setting of PSO are discussed in detail. Combined with artificial immune, some improved methods are brought forward to achieve better performances.
出处
《计算机工程与应用》
CSCD
2012年第26期36-38,59,共4页
Computer Engineering and Applications
基金
广东工业大学合生珠江创新项目(No.HSZJ2011015)
关键词
聚类分析
粒子群优化
群算法
人工免疫
clustering analysis
Particle Swarm Optimization(PSO)
swarm algorithm
artificial immune