期刊文献+

基于群算法的过程参量聚类研究 被引量:2

Clustering research of process parameters based on particle swarm optimization
下载PDF
导出
摘要 针对复杂过程的参量聚类问题,提出一种基于粒子群优化算法的聚类方法,阐述了聚类算法的基本思路。通过对过程煅烧温度和煅烧转速二维数据的聚类仿真研究,证明该算法在类似过程参量聚类中的实用性能。对粒子群优化算法的聚类特性及参数设置进行了详细的分析,并将其与前期人工免疫聚类结果进行对比,提出了算法的改进方案。 The paper adopts the Particle Swarm Optimization (PSO) to solve the parameters clustering problem of complex processes. The basic mechanism of PSO is presented in the paper. The clustering simulation on tempera- tures and rotation speeds of the calcination process verifies the practicability of PSO in parameters clustering of sim- ilar complex processes. The clustering features and parameters setting of PSO are discussed in detail. Combined with artificial immune, some improved methods are brought forward to achieve better performances.
出处 《计算机工程与应用》 CSCD 2012年第26期36-38,59,共4页 Computer Engineering and Applications
基金 广东工业大学合生珠江创新项目(No.HSZJ2011015)
关键词 聚类分析 粒子群优化 群算法 人工免疫 clustering analysis Particle Swarm Optimization(PSO) swarm algorithm artificial immune
  • 相关文献

参考文献6

  • 1Bonabeau E,Dorigo M,Theraulaz G.Swarm intelligence: from natural to artificial systems[M].New York: Oxford Univ Press, 1999.
  • 2Zhu Y F,Tang X M.Overview of swarm intelligence[C]// International Conference on Computer Application and System Modeling, TaiYuan, China, 2010, 10: 9400-9403.
  • 3朱燕飞,蔡永昶,李中华,毛宗源.人工免疫算法在过程数据分析中的应用[J].计算机工程与应用,2004,40(6):205-207. 被引量:8
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[C]// IEEE International Conference on Neural Network, 1995: 1942 - 1948.
  • 5Xiao X, Dow E R, Eberhart R C.Gene clustering using self-organizing maps and particle swarm optimization[C]// International Parallel and Distributed Processing Sympo- sium,Nice,2003 : 154-163.
  • 6Shi Y,Eberhart R C.Comparing inertia weights and con- striction factors in particle swarm optimization[C]//Pro- ceedings of the IEEE International Congress on Evolu- tionary Computation,2000, 1:84-88.

二级参考文献1

共引文献7

同被引文献20

  • 1黄光球,王国政,周静.用遗传算法求解物流运输中多级中转站定位优化问题[J].微电子学与计算机,2006,23(3):47-50. 被引量:4
  • 2中国现场统计研究会三次设计组,全国总工会电教中心.正交法和三次设计[M].北京:科学出版社,1987.
  • 3王宜举,修乃华.非线性优化理论[M].北京:科学出版社,2012.
  • 4LEUNG S C H,ZHANG De-fu,ZHOU Chang-le,et al. A hybrid simu- lated annealing metaheuristic algorithm for the two-dimensional knap- sack packing problem [ J ]. Computed Operation Research, 2012, 39( 1 ) :64-73.
  • 5SIMON D. Biogeography-based optimization [ J]. IEEE Tmns on Evolutionary Computation,2008,12(6) :702-713.
  • 6YANG Xin-she. A new metaheuristic bat-inspired algorithm [ M ]// Nature Inspired Cooperative Strategies for Optimization. Berlin : Spring- er-Verlag ,2010:65-74.
  • 7IISUFESCU M. Finite Markov processes and their applications [ M ]. Wiley : Chichester, 1980.
  • 8王嫒妮.顺序形态边缘检测及分水岭图像分割研究[D].武汉:武汉大学.2010.
  • 9张忠华,杨淑莹.基于遗传算法的聚类设计[R].南宁:中国高科技产业化研究会信号处理产业化分会.2008.
  • 10贺毅朝,王熙照.基于改进DE算法的难约束优化问题的求解[J].计算机工程,2008,34(13):193-194. 被引量:10

引证文献2

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部