期刊文献+

决策规则分类器在网络入侵检测中的应用

Application of decision rules classifier in network intrusion detection
下载PDF
导出
摘要 入侵检测作为一种主动防御技术,弥补了传统安全技术的不足。另外,它还具有实时监测功能,大幅提高了计算机网络系统的安全性能。提出了一种应用于网络入侵检测的决策规则分类器,该分类器对多目标函数的进化算法进行优化,使其分类精度和覆盖率达到最大,其中覆盖率最大就是可分类数据与不可分类数据的比例最大。研究结果表明该分类器对网络攻击有着较好的分类精度和覆盖率。 As a kind of active defense technology, intrusion detection system makes up for the shortcomings of tra- ditional security technology. In addition, it also has real-time monitoring function, greatly improves the safety of computer network system. This paper presents a decision rules binary classifier applied for network intrusion detec- tion. The classifier is optimized by a multiobjective evolutionary algorithm in order to maximize both the classifica- tion accuracy and the coverage level. The coverage level is the percentage of items that are classified, in opposite to items unable to be classified. Study results provide very good accuracy and coverage level in detecting attacks.
作者 张宝华
出处 《计算机工程与应用》 CSCD 2012年第26期93-95,共3页 Computer Engineering and Applications
关键词 决策规则 入侵检测 进化算法 decision rules intrusion detection evolutionary algorithm
  • 相关文献

参考文献5

  • 1Komviriyavut T, Sangkatsanee P, Wattanapongsakorn N, et al.Network intrusion detection and classification with decision tree and rule based approaches[C]//9th Interna- tional Symposium on Communications and Information Technology, 2009: 1046-1050.
  • 2Folino G,Pizzuti C,Spezzano G.An ensemble-based evo- lutionary framework for coping with distributed intru- sion detection[J].Genetic Programming and Evolvable Machines, 2010, 11.
  • 3Wang Juan, Yang Qiren, Ren Dasen.An intrusion detection algorithm based on decision tree technology[C]//Asia-Pacific Conference on Information Processing,2009,2 : 333-335.
  • 4梁浩,林丹,马楠.基于ε-支配的自适应多目标进化算法[J].计算机工程与应用,2011,47(34):39-43. 被引量:2
  • 5吴剑.基于特征选择的无监督入侵检测方法[J].计算机工程与应用,2011,47(26):79-82. 被引量:7

二级参考文献27

  • 1任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43. 被引量:169
  • 2高海华,杨辉华,王行愚.基于BPSO-SVM的网络入侵特征选择和检测[J].计算机工程,2006,32(8):37-39. 被引量:20
  • 3陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 4陈友,沈华伟,李洋,程学旗.一种高效的面向轻量级入侵检测系统的特征选择算法[J].计算机学报,2007,30(8):1398-1408. 被引量:46
  • 5Chou T S, Yen K K, Luo J.Network intrusion detection design using feature selection of soft computing paradigms[J].International Journal of Computational Intelligence, 2008,4 (3) : 196-208.
  • 6Portnoy L,Eskin E, Stolfo S J.Intrusion detection with unlabeled data using clustering[C]//Proceedings of ACM CSS Workshop on Data Mining Applied to Security,Philadelphia,PA,2001.
  • 7KDD CLIP 1999 Data[EB/OL]. (2009).http://kdd.ics.uci.edu/databases/kddcup99/ kddcup99.html.
  • 8Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the 1st International Conference on Genetic Algorithm and Their Applications, 1985.
  • 9Horn J,Nafpliotis N,Goldberg D E.A niched Pareto genetic algorithm for multiobjective optimization[C]//Proceedings of the International Conference on Evolutionary Computation, 1994:82-87.
  • 10Srinivas N, Deb K.Muiltiobjective optimization using nondominated sorting in genetic algorithms[J].Evolutionary Computation, 1994,2(3) :221-248.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部