期刊文献+

单生成拟循环码的生成元

The Idemopotent of 1-Genreator Quasi-cyclic Codes
下载PDF
导出
摘要 本文讨论了一般情况下单生成拟循环码的计数,并且给出了单生成拟循环码生成元的一个表示方法. This paper discusses the enumeration of 1-generator qusai-cyclis codes and descirbes an alqoritlun which will obtain one and only one,generator for each 1-generator quasi-cyclic codes.
出处 《江苏教育学院学报(自然科学版)》 2012年第4期18-19,69,共3页 Journal of Jiangsu Institute of Education(Social Science)
关键词 拟循环码 单生成元 计数 quasi-codes,idemopotent,enumeration
  • 相关文献

参考文献5

  • 1Sequin G. E.. A Class of 1-generator Quasi-cyclic Codes[ J]. IEEE Trans Inform Theory,2004, (50).
  • 2Junying PEI Xuejun ZHANG.1-GENERATOR QUASI-CYCLIC CODES[J].Journal of Systems Science & Complexity,2007,20(4):554-561. 被引量:2
  • 3Wan Z. X.. Cyclic Codes over Galois Rings [ J ]. Alge- bra Colloquium, 1996, (6).
  • 4Lally K. , Fitzpatrick P.. Algebraic Structure of Quansi- cyclic Codes[J]. Discr. Appl. Math, 2001,(246).
  • 5Ling S. , Sole P.. On the Algebric Structure Quasi-cy- clic Dodes I; Finite Fields [ J ]. IEEE Trans Inform Theory, 2001, (47).

二级参考文献9

  • 1G. E. Seguin, A class of 1-generator quasi-cyclic codes, IEEE Trans. Inform. Theory, 2004, 50: 1745-1753.
  • 2V. K. Bhargava, G. E. Seguin, and J. M. Stein, Some (mk, k) cyclic codes in quasi-cyclic form, IEEE Trans. Inform. Theory, 1978, 24:630-632.
  • 3T. A. Gulliver and V. K. Bhargava, Two new rate 2/P binary quasi-cyclic codes, IEEE Trans. Inform. Theory, 1994, 40:1667-1668.
  • 4S. E. Tavares, V. K. Bhargava, and S. G. S. Shiva, Some rate P/P + 1 quasi-cyclic codes, IEEE Trans. Inform. Theory, 1974, 20:133-135.
  • 5K. Lally and P. Fitzpatrick, Algebraic structure of quasi-cyclic codes, Discr. Appl. Math., 2001,246: 157-175.
  • 6S. Ling and P. Sole, On the algebraic structure quasi-cyclic codes Ⅰ: Finite fields, IEEE Trans. Inform. Theory, 2001, 47:2751-2760.
  • 7S. Ling and P. Sole, On the algebraic structure quasi-cyclic codes Ⅱ: chain rings, Designs, Codes, and Crypotography, 2003, 30: 113-130.
  • 8B. K. Dey and B. S. Rajan, IFq-linear cyclic codes over IFqm:DFT characterization, in Lecture Notes in Computer Science (ed. by S. Bozatas and I. E. Shparlinski), 2001, 2227:67-76.
  • 9R. M. Tanner, A transformation theory for a class of group invariant codes, IEEE Trans. Inform. Theory, 1998, 34:752-775.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部