摘要
This paper deals with fuzzy intelligent position control of electro-hydraulic activated robotic excavator for the control of boom, arm and bucket axes. Intelligent control systems are required to overcome unde- sirable stick-slip motion, limit cycles and oscillations. Models of electro-hydraulic servo controlled front end loader excavators are highly nonlinear. The nonlinear model accounts for fluid flow rate of valve, pump hydraulics, and friction forces. The friction forces are modelled by Coulomb, viscous and Stribeck function. Interval Type-2 Fuzzy Logic Controller (IT2FLC) is used to study the time-domain position responses of axes in the presence of external applied load. It has the ability to control the position of each of the three axes with minimum actuator position errors. Models presented are accurate and study the dynamics of the actuator and load. To improve the transient behaviour of the robotic excavator, we elim- inated iitter of the bucket movement in the presence of nonlinearities.
This paper deals with fuzzy intelligent position control of electro-hydraulic activated robotic excavator for the control of boom, arm and bucket axes. Intelligent control systems are required to overcome undesirable stick-slip motion, limit cycles and oscillations. Models of electro-hydraulic servo controlled front end loader excavators are highly nonlinear. The nonlinear model accounts for fluid flow rate of valve, pump hydraulics, and friction forces. The friction forces are modelled by Coulomb, viscous and Stribeck function. Interval Type-2 Fuzzy Logic Controller (IT2FLC) is used to study the time-domain position responses of axes in the presence of external applied load. It has the ability to control the position of each of the three axes with minimum actuator position errors. Models presented are accurate and study the dynamics of the actuator and load. To improve the transient behaviour of the robotic excavator, we eliminated jitter of the bucket movement in the presence of nonlinearities.