期刊文献+

基于GLM的贝叶斯变量与模型选择 被引量:5

Bayesian variable and model selection based on generalized linear models
下载PDF
导出
摘要 针对非正态响应的部分因子试验,当筛选试验所涉及的因子数目较大时,提出了基于广义线性模型(generalized linear models,GLM)的贝叶斯变量与模型选择方法.首先,针对模型参数的不确定性,选择了经验贝叶斯先验.其次,在广义线性模型的线性预测器中对每个变量设置了二元变量指示器,并建立起变量指示器与模型指示器之间的转换关系.然后,利用变量指示器与模型指示器的后验概率来识别显著性因子与选择最佳模型.最后,以实际的工业案例说明此方法能够有效地识别非正态响应部分因子试验的显著性因子. As for fractional factorial experiments with non-normal responses, a Bayesian variable and model selection approach based on generalized linear models (GLM) was proposed in the paper when the number of factors in screening experiments is large. Firstly, an empirical Bayesian prior was selected to consider the un- certainty of parameters in GLM. Secondly, we set a binary variable indicator for each variable in the linear predicator of GLM, and established a transformational relation between the variable indicators and the model indicators. Thirdly, we could identify significant factors and select the best model by the posterior probabilities of the variable indicators and the model indicators. Finally, a practical industrial example reveals that the pro- posed method can effectively identify significant factors in the fractional factorial experiment with non-normal responses.
出处 《管理科学学报》 CSSCI 北大核心 2012年第8期24-33,共10页 Journal of Management Sciences in China
基金 国家自然科学基金重点资助项目(70931002)
关键词 贝叶斯变量选择 部分因子试验设计 广义线性模型 筛选试验 非正态响应 Bayesian variable selection fractional factorial experiment generalized linear models screening experiments non-normal response
  • 相关文献

参考文献22

  • 1马义中,赵逢禹.多元质量特性的稳健设计及其实现[J].系统工程与电子技术,2005,27(9):1580-1582. 被引量:20
  • 2Myers R H, Montgomery D C. A tutorial on generalized linear models[J]. Journal of Quality Technology, 1997, 29(3) : 274 - 291.
  • 3Myers R H, Montgomery D C, Vinning G G. Generalized Linear Models with Application in Engineering and the Sciences [ M ]. New York: John Wiley & Sons, 2002.
  • 4Wu C F J, Hamada M. Experiments: Planning, Analysis, and Parameter Design Optimization[ M ]. New York: John Wiley & sons, 2000.
  • 5何桢,马彦辉,赵有.非正态响应的部分因子试验设计[J].工业工程,2008,11(2):72-75. 被引量:8
  • 6Lewis S L, Montgomery D C, Myers R H. Confidence interval coverage for designed experiments analyzed with GLMs [ J ]. Journal of Quality Technology, 2001, 33(3) : 279 -292.
  • 7Lewis S L, Montgomery D C, Myers R H. Examples of designed experiments with nonnormal responses [ J ]. Journal of Quality Technology, 2001, 33(3): 265-278.
  • 8Lewis S L, Montgomery D C, Myers R H. The analysis of designed experiments with non-normal responses [ J ]. Quality Engineering, 1999, 12(2) : 225 -243.
  • 9Weaver B P, Hamada M S. A Bayesian approach to the analysis of industrial experiments: An illustration with binomial count data[J]. Quality Engineering, 2008, 20(3) : 269 -280.
  • 10Robinson T J, Anderson-Cook C M, Hamada M S. Bayesian analysis of split-plot experiments with nonnormal responses for evaluating nonstandard performance criteria[J]. Technometrics, 2009, 51 ( 1 ) : 56 - 65.

二级参考文献73

共引文献40

同被引文献34

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部