期刊文献+

一类耦合KdV方程的孤波解和周期波解及其相互关系

On the Solitary Wave Solution and Periodic Wave Solution of a Class of Coupled KdV Equations
下载PDF
导出
摘要 运用平面动力系统的理论和方法对一类耦合KdV波动方程所对应的平面动力系统进行了定性分析,给出了该方程在一定条件下存在唯一钟状孤波解和无穷多个周期波解的结论.分别利用待定系数法和首次积分法求得了该方程钟状孤波解和周期波解的精确表达式,并直观地指出了它们所对应的解轨线在全局相图中的位置.进一步讨论了方程孤波解与Jacobi椭圆函数型周期波解的关系,并直观地给出了当模数趋于1时Jacobi椭圆函数周期波解向钟状孤波解演变的三维示意图. For a class of coupled KdV equations, the theory and method of planar dynamical system were applied to qualitatively analyse the dynamical system which the equation corresponds to. It is concluded that the equation has a unique bell profile solitary wave solution and infinite number of periodic wave solutions. The exact expressions of the bell solitary wave solution and the periodic solutions were provided by using the methods of undetermined coefficients and first integral respectively,and the positions of their orbits on the global phase portrait were pointed out. The relation between the solitary wave solution and the periodic wave solutions was discussed. Finally, 3-dimensional figures were presented to illustrate the evolution process of Jacobi elliptic functional periodic wave solution to bell solitary wave solution when the modulus tends to be 1.
出处 《上海理工大学学报》 CAS 北大核心 2012年第4期307-313,共7页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(10701164) 上海市研究生创新基金资助项目(JWCXSL1201)
关键词 耦合KdV波动方程 定性分析 孤波解 周期波解 全局相图 coupled KdV equation qualitative analysis solitary wave solution ~ periodicwave solution ~ global phase portrait
  • 相关文献

参考文献12

  • 1Kumpershmidt B A. A coupled Korteweg-de Vries equation with dispersion [J]. J Phys A: Math Gen, 1985, (18) :571 - 573.
  • 2Garder C S. The Korteweg-de Vries equation and generalizations IV [J]. Journal of Mathematical Physics, 1971,12(4):1548 - 1551.
  • 3Konno K, Ichikawa Y H. A modified Korteweg-de Vries equation for ion acoustic waves[J]. J Phys Soc Japan,1974,37(7):1631- 1636.
  • 4Dodd R K, Eilbeckj C, Gibbon D J, et al. Solitons and nonlinear wave equations[M]. London:Academic Press Inc Ltd, 1982.
  • 5Narayanamurti V, Varma C M. Nonlinear propagation of heat pulses in solids[J]. Phys Rev Lett, 1970, 25 (16) :1105 - 1108.
  • 6Tappert F D,Varma C M. Asymptotic theory of self- trapping of heat pulses in solids[J]. Phys Rev Lett, 1970,25(16) : 1108 - 1111.
  • 7Zhang W G, Chang Q S, Fan E G. Methods of judging shape of solitary wave and solutions formula for some evolution equations with nonlinear terms of high order [J].J Math And Appl,2003,287(1):1 - 18.
  • 8Lu B Q,Pan Z L,Qu B Z,et al. Solitary wave solutions for some systems of coupled nonlinear equations[J].Physics Letters A, 1993,180( 1 ) : 61 - 64.
  • 9Xuejun XU and Jiefang ZHANG(Institute of Nonlinear Physics and Dept. of Physics. Zhejiang Normal Univ., Jinhua321004, China).New Exact and Explicit Solitary WaveSolutions to a Class of Coupled Nonlinear Equations[J].Communications in Nonlinear Science and Numerical Simulation,1998,3(3):189-193. 被引量:1
  • 10Ito M. Symmetries and conservation laws of a coupled nonlinear wave equation[J]. Phys lett A, 1982,91(7) : 335 - 338.

二级参考文献7

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部