期刊文献+

相对定向中错误匹配的剔除方法研究 被引量:1

The Research on False Matches Filtering of Automatic Relative Orientation
下载PDF
导出
摘要 数字影像的全自动相对定向已不再仅仅利用传统的6点而是利用相当多的点来完成,这样就可以有大量的多余观测以提高定向参数解算的可靠性。然而,匹配点集中不可避免地会存在错误匹配,影响定向参数的准确性,如何剔除这些错误匹配是一个很重要的问题。本文简要介绍了全自动相对定向的流程,阐明误匹配剔除在全自动相对定向过程中所起的作用,根据最小中值平方法的思想原理,提出基于RANSAC的核线约束和仿射变换约束的误匹配剔除流程。实验结果表明,算法能有效滤除误匹配,保证了相对定向结果的正确性。 The full-automatic relative orientation of digital images makes use of quite a number of points instead of traditional 6 points and plentiful redundant observations can improve the reliability of calculating orientation parameters. However, inevitable mismatch due to aggregation of matching points influences the accuracy of orientation parameters. Then, how to reject this kind of mismatch is an important problem. This paper introduced the workflow of full-automatic relative orientation, illustrated the roles of mismatch rejection in the process of full-automatic relative orientation and proposed a new algorithm to reject mismatch based on epipolar constrains and affine transformation with RANSAC according to the least median square method. The experimental results show the proposed algorithm can effectively filter mismatch and ensure the accuracy of relative orientation.
出处 《城市勘测》 2012年第4期73-76,共4页 Urban Geotechnical Investigation & Surveying
基金 住房和城乡建设部科技项目(2011-R2-3)
关键词 自动相对定向 最小中值平方法 Frstner算子 RANSAC Automatic relative orientation The least median square method Forstner RANSAC
  • 相关文献

参考文献8

  • 1金为铣 杨先宏 邵鸿潮.摄影测量学[M].武汉:武汉大学出版社,2001..
  • 2DAVID G. Lowe. Dislinctive image features from suede-invariant keypoints[J]. International Journal of Computer Vision. 2004,60(2) :91-110.
  • 3FISCHLER M A,BOLLES R C. Random sample consensus: A Paradigm for model fitting with applications to image analysis and automated cartography [ J ]. Communications ACM, 1981,24(6) :381 -395.
  • 4马颂德,张正友.计算机视觉-理论与算法基础[M].北京:科学出版社,1997.
  • 5ZHANG Z Y, DERICHE R, FAUGERAS O, et al. A robusttechnique for matching two uncalibrated images through the recovery of the unknown epipolar geometry [ J ]. Artificial Intelligence, 1995,7 ( 8 ) : 87 - 119.
  • 6周骥,石教英,赵友兵.图像特征点匹配的强壮算法[J].计算机辅助设计与图形学学报,2002,14(8):754-757. 被引量:57
  • 7武汉大学测绘学院.误差理论与测量平差基础[M].武汉:武汉大学出版社,2003..
  • 8蔡涛,李德华,关景火.非标定图像的最优匹配方法[J].计算机工程与应用,2004,40(7):3-5. 被引量:3

二级参考文献13

  • 1[1]P H S Torr,D W Murray.The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix[J].International Journal of Computer Vision, 1997;24(3) :271~300
  • 2[2]P H S Torr,A Zisserman. Robust Computation and Parameterization of Multiple View Relations.ICCV,1998:727~732
  • 3[3]Z Zhang,R Deriche,O Faugeras et al.A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J].Artificial Intelligence, 1995; 78: 87~ 119
  • 4[4]Z Zhang. Determining the epipolar geometry and its uncertainty:A review[J].The International Journal of Computer Vision, 1998; 27 (2):161~195
  • 5[5]G Scott,H Longuet-Higgins. An algorithm for associating the features of two images[C].In:Proc Royal Society London,1991 ;B244:21~26
  • 6[6]M Pilu. Uncalibrated Stereo Correspondence by Singular Value Decomposition[R].Technical Report HPL-97-96,Digital Media Department,HP Laboratories Bristol,1997-08
  • 7[7]S Gold,A Rangarajan,C P Lu et al. New algorithm for 2D and 3D point matching:Pose estimation and correspondence[J].Pattern Recognition, 1998 ;31 (8): 1019~1031
  • 8[8]C Harris,M Stephens.A combined corner and edge detector[C].In:Proc 4th Alvey Vision Conf,Manchester,U K, 1988:147~151
  • 9[9]R Sinkhom. A relationship between arbitrary positive matrices and doubly stochastic matrices[J].Ann Math Statist, 1964;35:876~879
  • 10[10]Marr,Poggio. A Computational Theory of Human Stereo Vision[C].In:Proc Royal Society of London,1979;204 of B:301~328

共引文献103

同被引文献7

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部