期刊文献+

企业级搜索引擎中结果聚类和查询补全技术

Results Clustering and Query Completion in Enterprise Search Engine
下载PDF
导出
摘要 目前,搜索引擎技术发展迅速.但从用户的使用效果来看,传统的搜索引擎技术功能基本相似,在具体实现上仍有待提高.从提升用户体验角度出发,解决传统搜索引擎的搜索结果不能体现类别信息,并且搜索过程没有相应的智能提示的问题.研究基于Nutch的检索技术的特性和应用方法,实现了企业级搜索引擎中的搜索结果自动聚类和查询补全技术.实验结果表明,结果聚类和查询补全技术有效地提升了搜索引擎的搜索体验,增强了系统的使用价值和智能性,系统可靠性高. Search engine technology develops rapidly. But from the perspective of user experience, the function of traditional search engine technology is similar, which should be improved. In order to promote user experience, this paper mainly tackles two problems of traditional search engine. One is that search results can't reflect category information. The other is the search process lacks a corresponding query help. Based on the research of the characteristics and the application method of Nuteh, the methods of search results clustering and automatic que- ry complement are realized in enterprise search engine. The experimental results show that the above two methods effectively improve the users experience of search, and enhance the value, intelligence and reliability of the system.
出处 《哈尔滨理工大学学报》 CAS 2012年第4期92-96,共5页 Journal of Harbin University of Science and Technology
基金 黑龙江省自然科学基金(F200936) 教育部人文社科项目(11YJC740048) 哈尔滨市科技创新人才研究专项(2010RFQXG042)
关键词 企业级搜索引擎 搜索结果聚类 查询自动补全 enterprise search engine search results clustering automatic query complement
  • 相关文献

参考文献9

  • 1RICARDO Baeza-Yates. Modem Information Retrieval [ M ]. New York: ACM Press, 1999:73 -90.
  • 2孙广路,易成岐,郎非.基于合并因子的多种格式文件索引技术[J].哈尔滨理工大学学报,2012,17(2):1-4. 被引量:2
  • 3ZAMIR O, ETZIONI O, MADNI O,et al. Fast and Intuitive Clustering of Web Documems[ C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. California, USA:AAAI Press,1997 : 287 -290.
  • 4孙广路,王晓龙,刘秉权,关毅.基于词聚类特征的统计中文组块分析模型[J].电子学报,2008,36(12):2450-2453. 被引量:7
  • 5LINDA. Building Rich Web Applications with Ajax, IEEE Computer Society of Industry Trends[J], 2005(10) : 14 -17.
  • 6OSI'NSKI S, STEFANOWSKI J, LINGO D Weiss. Search Results Clustering Algorithm Based on Singular Value Decomposition[D]. Poland: Poznaia University of Technology, 2004:39 -42.
  • 7陈永超,刘贵全.一种基于命名实体的搜索结果聚类算法[J].计算机工程,2009,35(7):46-48. 被引量:6
  • 8彭时名.中文文本分类中特征提取算法研究[D].重庆:重庆大学,2005.
  • 9CAI Deng, YU Shipeng, WEN Jirong, et al. VIPS: a Vision- based Page Segmentation Algorithm[ R]. Microsoft Technical Report, 2003 : 1 - 9.

二级参考文献21

  • 1Chen W, et al. An empirical study of chinese chunking[ A]. In Proceedings of the 44th Annual Meeting of ACL[C]. Sydney: ACL Press,2006.97 - 104.
  • 2Dagan I, et al. Similarity-based methods for word sense disam-biguafion[ A ]. In Proceedings of the 35th Annual Meeting of ACL[ C ]. Madrid: ACL Press, 1997.56 - 63.
  • 3Brown P,et al. Class-based n-gram models of natural language [J]. Computational Linguistics, 1992,16(2) :79 - 85.
  • 4Gao J, et al. The use of clustering techniques for language modeling application to asian languages[J]. International Journal of Computational Linguistics and Chinese Language Processing, 2001,6(1) :27 - 60.
  • 5Sun G, et al. Chinese chunking based on maximum entropy markov models[J]. International Journal of Computational Linguistics and Chinese Language Processing, 2006,11 (2) : 115 - 136.
  • 6McCallum A, et al. Maximum entropy markov models for informarion extraction and segmentation [ A ]. In Proceedings of ICML' 2000 [C]. Stanford: MIT Press, 2000,591 - 598.
  • 7Osinski S, Weiss D. A Concept-driven Algorithm for Clustering Search Results[J]. IEEE Intelligent Systems, 2005, 20(3): 48-54.
  • 8Zamir O, Etzioni O. Web Document Clustering: A Feasibility Demonstration[C]//Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in information Retrieval. Melbourne, USA: ACM Press, 1998: 46-54.
  • 9Zhang Dell, Dong Yisheng. Semantic, Hierarchical, Online Clustering of Web Search Results[C]//Proceedings of the 6th Asia Pacific Web Conference. Hangzhou, China: Springer, 2004: 69-78.
  • 10Chi Lang Ngo. A Tolerance Rough Set Approach to Clustering Web Search Results[D]. Warsaw: Warsaw University, 2004.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部