期刊文献+

单模激发纠缠相干态的数学特性

The Mathematical Properties of Single-Mode Excited Entangled Coherent States
下载PDF
导出
摘要 提出了一种连续变量的纠缠相干态即单模激发纠缠相干态(SMEECSs),其形式为,︱ψ±(α,m)>=N±(α,m)α-+m(︱α,α>+︱-α,-α>),m=(1,2,3,…),并研究SMEECSs的数学性质以及通过激光-原子的相互作用和量子测量来制备SMEECSs这个态的方法。 The present paper introduces a new kind of continuous-variable-type entangled coherent states called single-mode excited entangled coherent states, which can be defined by ︱ψ±(α,m)〉=N±(α,m)α-+m(︱α,α〉+︱-α,-α〉),m=(1,2,3,…) This paper mainly studies the mathematical properties of the states.It show that the SMEECSs form a type of cyclic representation of the Heisenberg-Weyl algebra.It also shows how such states can be produced by using cavity QED and quantum measurements.
作者 许兰
出处 《湖南第一师范学院学报》 2012年第4期107-109,共3页 Journal of Hunan First Normal University
基金 湖南省教育厅资助科研项目(11C0287)
关键词 激发 量子态 光子 Excitement Quantum states Photon
  • 相关文献

二级参考文献42

  • 1Jeong H and Kim M S 2002 Phys. Rev. A 65 042305.
  • 2Munro W Jet al 2000 Phys. Rev. A 62 052108.
  • 3Enk S J and Hirota O 2001 Phys. Rev. A 64 022313.
  • 4Ban M 1999 J. Opt. B: Quantum Semiclass. Opt. 1 L9.
  • 5Bialynicka-Birula Z 1968 Phys. Rev. 173 1207.
  • 6Vuziri A et ul 2002 Phys. Rev. Lett. 89 240401.
  • 7Bourennane M et al 2001 Phys. Rev. A 64 012306.
  • 8Enk S J 2003 Phys. Rev. Lett. 91 017902.
  • 9Hillery M 2000 Phys. Rev. A 61 022309.
  • 10Reid M D 2000 Phys. Rev. A 62 062308.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部