期刊文献+

流延法制备高热导率定向石墨/高分子复合片层材料(英文) 被引量:5

Preparation of oriented graphite/polymer composite sheets with high thermal conductivities by tape casting
下载PDF
导出
摘要 以天然鳞片石墨为原料,PVB为黏结剂,PEG和DBP混合物为增塑剂,通过流延工艺在室温下制备了定向排列的石墨/聚合物片层复合材料。系统分析了不同黏结剂用量和流延刀口高度下复合片层材料的定向排列状况,并探讨了定向排列程度对其热导率的影响。XRD和SEM的结果表明,石墨/聚合物复合片层材料显示了不同程度的定向排列。热导率测试结果表明,片层复合材料的热导率随着定向排列程度的提高而增大。通过优化黏结剂的用量和流延刀口高度制备了具有较高热导率的片层复合材料,其热导率最高可达490 W/(m.K)。 Oriented graphite/polymer composite sheets were prepared using natural,crystalline flake graphites as raw materials,polyvinyl butyral as binders,polyethylene glycol and dibutyl phthalate as plasticizers by a tape-casting method at room temperature.The dependences of the binder contents and the blade heights on the orientation of the composite sheets were studied,and the effect of the orientation on the thermal conductivity was investigated.X-ray diffraction patterns and scanning electron microscope images showed that as-prepared samples showed different degrees of orientation.The thermal conductivity increased with the degree of orientation.The highest thermal conductivity of 490 W/(m · K) could be achieved by optimizing the binder contents and the blade heights.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2012年第4期241-249,共9页 New Carbon Materials
基金 National Natural Science Foundation of China under Grant(50802049,50972065 and 50902079) Guangdong Province Innovation R&D Team Plan(JP200806230010A) the Guangdong Province Innovation R&D Team Plan(2009010025)~~
关键词 天然鳞片石墨 流延法 定向排列 热导率 Natural crystalline flake graphite Tape casting Orientation Thermal conductivity
  • 相关文献

参考文献17

  • 1Bokros J C. Deposition, Structure and Properties of Pyrolytic Carbon[M]. In: Walker PL Jr, editor. Chemistry and Physics of Carbon, vol 5, New York: Marcel Dekker Inc, 1969. p. 1- 118.
  • 2Balandin A A, Ghosh S, Bao W, ct al. Superior thermal con- ductivity of single-layer graphcnc[ J]. Nano Lctt, 2008, 8 : 902- 907.
  • 3Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high ther- mal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [ J ]. Appl Phys Lett, 2008, 92: 151911.
  • 4Nika D L, Pokatilov E P, Askerov A S, et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering[ J]. Phys Rev B, 2009, 79: 155413.
  • 5Balandin A A, Ghosh S, Nikaande D L, et al. Thermal conduc- tion in suspended graphene layers [ J ]. Fuller Nanotub Car N, 2010, 18: 474-486.
  • 6Klemens P G, Pedraza D F. Thermal conductivity of graphite in the basal plane[J]. Carbon, 1994, 32: 735-741.
  • 7Murakami M, Nishiki K, Knakamura K, et al. High-quality and highly oriented graphite block from polycondensation polymer films[J]. Carbon, 1992, 30: 255-262.
  • 8Murakami M, Yoshimura S. Highly conductive pyropolymer and high-quality graphite from polyoxadiazole [ J ]. Synthetic Met 1987, 18: 509-514.
  • 9Hishiyama Y, Nakamura M, Nagata Y, et al. Graphitization be- havior of carbon film prepared from high modulus polyimide film: Synthesis of high-quality graphite film [ J ]. Carbon, 1994, 32 : 645-650.
  • 10Liu Z J, Guo Q G, Shi J L, et al. Graphite blocks with high thermal conductivity derived from natural graphite flake [ J ]. Carbon, 2008, 46: 414-421.

同被引文献41

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部