期刊文献+

基于蝶翅鳞片三维结构的Au/SnO_2纳米复合材料制备及其表面增强拉曼散射性能研究 被引量:3

Fabrication of Au/SnO_2 Nanocomposites Based on 3D Structures of Butterfly Wing Scales and Research on Its SERS Effects
下载PDF
导出
摘要 利用巴黎翠凤蝶前翅翅鳞片作为模板,通过前驱体浸泡后烧结的方法制备出具有原始蝶翅鳞片准周期三维结构的SnO2(金红石相),并采用化学沉积的方法在已制备的SnO2上沉积Au纳米颗粒,合成出Au/SnO2纳米复合材料.通过SEM、XRD以及TEM等表征方法检测并分析该材料形貌结构和成分组成.采用罗丹明6G(R6G)作为分析物,测试该材料的表面增强拉曼散射光谱.通过材料形貌结构图及UV-Vis漫反射光谱谱图,分析该基底的表面增强拉曼散射机理.该基底所具有的三维结构为拉曼信号增强提供大量"热点",而基底材料中SnO2和Au纳米颗粒为拉曼增强效应提供协同作用.良好的拉曼性能以及较低的制备成本表明,该新型表面增强拉曼散射基底具有一定的应用前景. Scales from fore wings of Papilio paris was used as templates, by ringing the original fore wings in the precursor and treatment by calcinations, SnO2 (rutile) which inherited the 3D quasi-periodic structures of original wing scale was fabricated. After that, Au nanoparticles were incorporated in the system of as-prepared SnOz to form the Au/SnO2 nanocomposites. XRD, SEM and TEM were carried out to investigate the morphologies, structures and elemental composition. For measuring Surface-enhanced Raman Scattering (SERS) effects of the Au/SnO2 substrate, R6G was used as analyte molecules. By analyzing morphologies of this nanocomposites and UV-Vis DRS spectra of different substrates, mechanisms of SERS effects for this Au/SnO2 nanocomposites substrate were analyzed. The three-dimensional nanostructures of the substrate provide large quantities of Raman 'hot spots', meanwhile, the SnO2 and Au make synergetic contribution to the enhancement effects. The satisfying SERS properties combined with low synthesis costs show the prospective application possibilities of this novel SERS substrate.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2012年第9期917-922,共6页 Journal of Inorganic Materials
基金 国家自然科学基金(51001070) 上海市科委基础研究重点项目(10JC1407600) 国家教育部回国人员科研启动基金(Z1029903)~~
关键词 蝶翅鳞片 准周期三维结构 Au/SnO2 表面拉曼增强散射 butterfly wing scale 3D quasi-periodic structure Au/SnO2 SERS
  • 相关文献

参考文献21

  • 1Smith W E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev., 2008, 37(5): 955-964.
  • 2Qin L. Designing, fabricating, and imaging Raman hot spots. Proc. Natl. Acad. Sci., 2006, 103(36): 13300-13303.
  • 3Hildebrandt P, Stockburger M. Surface-enhanced resonance raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem., 1984, 88: 5935-5944.
  • 4Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B, 2002, 106(37): 9463-9483.
  • 5Musumeci A, Gosztola D, Schiller T, et al. SERS of semiconducting nanoparticles (TiO2 hybrid composites). J. Am. Chem. Soc., 2009, 131(17): 6040-6041.
  • 6Yang L B, Jiang X, Ruan W D, et al. Charge-transfer-induced surface-enhanced Raman scattering on Ag-TiO2 nanocomposites. J. Phys. Chem. C, 2009, 113(36): 16226-16231.
  • 7He H, Cai W P, Lin Y X, et al. Surface decoration of ZnO arrays by electrophoresis in the Au colloidal solution prepared by laser ablation in water. Langmuir, 2010, 26(11): 8925-8932.
  • 8Prokes S M, Glembocki O J, Rendell R W, et al. Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy. Appl. Phys. Lett., 2007, 90(9): 093105-1-3.
  • 9Wu W, Hu M, Ou F S, et al. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology, 2010, 21(25): 255502.
  • 10He H, Cai W P, Lin Y X, et al. Silver porous nanotube built three-dimensional films with structural tunability based on the nanofiber template-plasma etching strategy. Langmuir, 2011, 27(5): 1551-1555.

同被引文献24

  • 1张荻,孙炳合,范同祥.遗态材料的制备及微观组织分析[J].中国科学(E辑),2004,34(7):721-729. 被引量:25
  • 2陈祖耀 胡俊宝.低温等离子体化学法制备Sn02超微粒子粉末[J].硅酸盐学报,1986,14(3):326-331.
  • 3CHAUDHARY V A, MULLA S, VIJAYAMOHANAN K. Selec- tive hydrogen sensing properties of surface functional- ized tin oxide[J]. Sens Actuators B: Chem, 1999, 55 (2-3) : 154-160.
  • 4PAN J H,CHAI S Y,LEE C, et al. Controlled formation of highly crystallized cubic and hexagonal mesoporous SnO2 thin films[J]. J Phys Chem C, 2007, 111(15): 5582-5587.
  • 5SUN J Q, WANG J S, WU X C, et al. Novel method for high-yield synthesis of rutile SnOz nanorods by oriented ag- gregation[J]. Cryst Growth Des, 2006, 6(7): 1584-1587.
  • 6LIXufan, FAN Tongxiang, LIU Zhaoting, et al. Synthesis and hie-rarchicalpore structure of biomorphiemanganese ox- ide derived fromwoods[J]. J Eur CeramSoe, 2006,26(16): 3657-3664.
  • 7SUN Binhe,FAN Tongxiang,XU Jiaqiang, et al. Biomorphic syn- thesis of SnO2 microtubules on cotton fibers[J]. Mater Lett, 2005, 59: 2325-2328.
  • 8DONG Qun, SU Huilan, ZHANG Di, et al. Biotemplate-di- rected assembly of porous SnO2 nanoparticles into tubular hi- erarchical structures [J]. Sci Mater, 2006, 55(9):799-802.
  • 9DONG Qun,SU Huilan,XU Jiaqiang,et al. Influence of hier- archical nanostructures on the gas sensing properties of SnO2 biomorphicfilms [J]. Sens Actuators B, 2007,123(1): 420- 428.
  • 10LI Xiuhua, HUANG Huacheng, LING Ling, et al. SnO2 Nanocry- stals coated carbon nanotubes synthesized by sol-gel method [J]. Chin J Inorg Chem, 2011,27(4) :781-784.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部