期刊文献+

基于神经网络方法的不确定非线性微分-代数子系统的鲁棒反推镇定控制 被引量:2

Robust backstepping stabilization control for uncertain nonlinear differential-algebraic equations subsystems based-on artificial neural networks
下载PDF
导出
摘要 对于指数1且关联可测的不确定非线性微分-代数子系统,将反推方法和神经网络相结合,研究了其鲁棒渐近镇定控制问题.基于反推方法来构造镇定控制器,利用3层的神经网络来逼近每一步控制器构造过程中的不确定项.提出一种新的自适应算法对神经网络权值进行在线调节,并适当选取每一步虚拟控制器的参数,最终得到的控制器使得闭环系统是渐近稳定的. For a class of uncertain nonlinear differential-algebraic equations subsystems whose index is one and in- terconnection is locally measurable, the problem of robust stabilization is considered by combining the backstepping method and artificial neural networks. The robust stabilization controller is proposed based on backstepping approach by using three-layer artificial neural networks to approximate the uncertain terms arisen in the procedure of control- ler design. The weights of neural networks are updated online with a new self-adaptive algorithm. By choosing the gain parameters of the virtual controllers step-by-step, a stabilization controller is obtained through which the closed- loop systems are made asymptotically stable.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2012年第4期340-344,共5页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(61004001 61104103 60904025) 江苏省自然科学基金(BK2011826) 南京信息工程大学科研基金(S8110046001)
关键词 微分-代数系统 子系统 神经网络 反推 differential-algebraic equations systems subsystems artificial neural networks backstepping
  • 相关文献

参考文献8

二级参考文献47

共引文献25

同被引文献19

  • 1戴先中,张凯锋.复杂电力系统的接口概念与结构化模型[J].中国电机工程学报,2007,27(7):7-12. 被引量:15
  • 2张凯锋,戴先中,齐辉,赵大伟.复杂电力系统的元件结构化模型分析与应用[J].中国电机工程学报,2007,27(13):24-28. 被引量:12
  • 3赵新良.动态投入产出[M].沈阳:辽宁人民出版社,1991.
  • 4张庆灵.广义大系统的分散控制与鲁棒控制[M].西安:西北工业大学出版社,1982.
  • 5Zang Q, Dai X Z,Zhang K F. Asymptotic stabilization for a class of nonlinear differential-algebraic equations sub- systems [ C ]//Proceedings of the 3rd International Con- ference on Impulsive Dynamic Systems and Applications, 2006 : 1434-1439.
  • 6Zang Q, Dai X Z, Zhang K F. Backstepping control for a class of nonlinear differential-algebraic equations subsys- tems with application to power system [ C ]///Proceedings of the 7th World Congress on Intelligent Control and Au- tomation, 2008 : 4668 -4673.
  • 7Wang J, Chen C. Exact linearization of nonlinear control of differential algebraic systems [ C ]//Proceedings of In- ternational Conference on Info-Tech and Info-Net,2001 : 284 -290.
  • 8Zhou S S, Feng G, Feng C B.Robust control for a class of uncertain nonlinear systems: Adaptive fuzzy approach based on backstepping [ J ]. Fuzzy Sets and Systems, 2005,151(1) :1-20.
  • 9Shen Q, Shi P, Zhang T, et al. Novel neural control for a class of uncertain pure-feedback systems [ J ]. IEEE Transactions on Neural Networks and Learning Systems, IEEE Early Access Articles,2013.
  • 10Wai R J, Muthusamy R. Design of fuzzy-neural-network inherited backstepping control for robot manipulator in- eluding actuator dynamics [ J ]. IEEE Transactions on Fuzzy Svstems.IEEE Early Access Articles.2013.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部