摘要
多机无源定位中存在载机位置误差却不予考虑时必然会降低目标的定位跟踪精度。为了解决存在载机位置误差情况下的定位问题,提出了一种考虑载机位置误差的约束最小二乘(CLS)多机无源定位算法。该算法对伪线性观测方程中由于测量误差和载机位置误差而导致的增广系数矩阵的误差协方差阵进行约束,并对伪线性观测方程的误差进行约束最小二乘处理,最终转化为对一组矩阵束的广义特征分解问题。仿真结果表明,相对于最小二乘(LS)算法和扩展卡尔曼滤波(EKF)算法,该算法具有更快的收敛速度和较高的定位精度,并且受载机位置误差影响小,在观测噪声比较大时仍能保持良好的定位性能。
Source location accuracy would inevitably deteriorate in the presence of observer position errors without taking them into account in multi-plane passive location system. An algorithm for multi-plane passive location that takes the observ- er position errors into account is proposed in order to solve the location problem in the presence of observer position errors. The proposed algorithm introduces the error correlation matrix of the argumented coefficient matrix in the observation equa- tions caused by the measurement errors and observer position errors into the constraint, and uses the constrained least squares minimization on the errors of pseudo linear observation equations~ which turns out to be equal to the generalized eigen-decomposition to a pair of matrix pencil. Simulation result indicates that the proposed algorithm achieves higher speed of convergence and high location precision, weakly affected by the observer position errors, and keeps good performance e- ven in the condition of large measurement errors when compared with LS algorithm and EKF algorithm.
出处
《信号处理》
CSCD
北大核心
2012年第7期980-987,共8页
Journal of Signal Processing
基金
航空科学基金(20105584004)
关键词
多机无源定位
位置误差
约束最小二乘
特征分解
multi-plane passive location
position errors
constrained least-squares
eigen-decomposition