期刊文献+

改进的基于分形盒维数的共信道多信号存在性检测算法 被引量:5

Improved Algorithm for Detecting the Presence of Co-channel Multi-signal Based on Fractal Box Dimension
下载PDF
导出
摘要 针对时频重叠的共信道多信号存在性检测问题,提出了一种改进的基于分形盒维数的算法。算法用瞬时幅度的盒维数作为检测统计量,通过理论推导得出噪声瞬时幅度的盒维数为一定值1.415,共信道多信号瞬时幅度的盒维数近似等于1,并以此得出了检测的理论门限。如果接收信号瞬时幅度的盒维数小于设定的检测门限则说明有信号,否则没有信号。共信道多信号为MASK、MPSK、MQAM和MFSK任意类型混合时,仿真结果表明在加性高斯噪声背景下算法准确有效,信噪比大于-2dB时检测概率达到100%且虚警概率极低。另外,算法对信号调制类型、调制参数、信号源个数具有很好的鲁棒性,计算简单复杂度低、可实时处理。相比于已有研究,本算法门限值的设定更加精确,检测性能有大幅提升。 To tackle the problem of detecting the presence of time-frequency overlapped co-channel multi-signal, an im- proved algorithm based on fractal box dimension is proposed. The box dimension of instantaneous amplitude is used as de- tection statistics, which of noise is proved to be a constant 1. 415 by theoretical deduction, while which of co-channel muhi- signal is turned out equaling to 1 approximately. According to the result, the theoretical threshold can be set. It is signal if the received signal's box dimension of instantaneous amplitude is less than the threshold, otherwise it is noise. The co-chan- nel multi-signal is overlapped by several independent signals, of which the modulation types include MASK, MPSK, MQAM and MFSK. Simulation results prove that the method is effective and accurate in the additional Gaussian noise environments. When SNR is more than -2dB, the detection probability reaches 100% while false-alarm probability is very low. Addi- tionally, it is robust to modulation types, modulation parameters and source number, easy to compute and can be used as real-time processing. Compared to the existing methods, the threshold proposed in this paper is more accurate, and the performance is improved greatly.
出处 《信号处理》 CSCD 北大核心 2012年第7期1044-1050,共7页 Journal of Signal Processing
基金 国家自然科学基金资助项目(61072046) 河南省基础与前沿基金资助项目(1123004100322)
关键词 共信道多信号 时频重叠 分形盒维 信号检测 co-channel multi-signal time-frequency overlapped fractal box dimension signal detection
  • 引文网络
  • 相关文献

参考文献13

  • 1Urkowitz H. Energy detection of unknown deterministic sig- nals [J]. Proceedings of the IEEE,1967,55(4) :523-531.
  • 2Digham F F,Mouini M S, Simon M K. On the Energy De- tection of Unknown Signals Over Fading Channels [ J ]. IEEE Transactions on Communications ,2007,55( 1 ) :21-24.
  • 3Zhang W, Mallik R, Letaief K. Optimization of coopera- tive spectrum sensing with energy detection in cognitive radio networks [ J ]. IEEE Transactions on Wireless Com- munications ,2009,8 ( 12 ) :5761-5766.
  • 4Amod V D, Georgios B G. Statistical Tests for Presence of Cyclostationary [ J ]. IEEE Transactions on signal pro- cessing, 1994,42 (9) :2355-2369.
  • 5Lunden J, Kassam S A, Koivunen V. Robust Nonpara- metric Cyclic Correlation-Based Spectrum Sensing for Cognitive Radio J ]. IEEE Transactions on Signal Pro- cessing,2010,58 ( 1 ) :38-52.
  • 6Quan Z, Zhang W Y, Shellhammer S J, Sayed, A H. Optimal Spectral Feature Detection for Spectrum Sensing at Very Low SNR [ J ]. IEEE Transactions on Communi- cations ,2011,59( I ) :201-202.
  • 7Zeng Y H, Liang Y C. Maximum-Minimum Eigenvalue Detection for Cognitive Radio [ C ] ff IEEE 18th Interna- tional Symposium on Personal, Indoor and Mobile Radio Communications. Athens. 2007 : 1-5.
  • 8Zeng Y H, Liang Y C. Eigenvalue-based spectrum sens- ing algorithms for cognitive radio [ J ]. IEEE Transactions on Communications,2009,57(6) : 1784-1793.
  • 9Kortun A, Ratnarajah T, Sellathurai M, Zhong C J. On the Performance of Eigenvalue-Based Spectrum Sensing for Cognitive Radio[ C]//J 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum. Singapore. 2010 : 1-6.
  • 10赵春晖,马爽,杨伟超.基于分形盒维数的频谱感知技术研究[J].电子与信息学报,2011,33(2):475-478. 被引量:41

二级参考文献14

  • 1Sridhara K, Chandra A, and Tripathi P S M. Spectrum challenges and solutions by cognitive radio: an overview [J]. Wireless Personal Communications, 2008, 45(3): 281-291.
  • 2Haykin S. Cognitive radio: brain-empowered wireless communications [J]. IEEE Journal Selected Areas in Commun., 2005, 23(2): 201-220.
  • 3Chen Xiao-fei and Nagaraj S. Entropy based spectrum sensing in cognitive radio [C]. 7th Annual Wireless Telecommunications Symposium, Ponoma, CA, United States, April 2008: 57-61.
  • 4Cabrie D, Mishra S M, and Brodersen R W. Implementation issues in spectrum sensing for cognitive radios [C]. Proc. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, United States, Nov. 2004, 1: 772-776.
  • 5Jarmo L, Visa K, Anu H, and Vincent P H. Spectrum sensing in cognitive radios based on multiple cyclic frequencies [C]. Proceedings of the 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom, Orlando, FL, United States, August 2007: 37-43.
  • 6Renzo M D, Imbriglio L, and Graziosi F, et al. Cooperative spectrum sensing for cognitive radios: Performance analysis for realistic system setups and channel conditions [M]. Mobile Lightweight Wireless Systems, Berlin, Springer Berlin Heidelberg, 2009: 125-134.
  • 7Lunden J and Koivunen V, et al. Collaborative cyclostationary spectrum sensing for cognitive radio systems [J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4182-4195.
  • 8Hu Z and Guo N, et al. Wideband waveform optimization with energy detector receiver in cognitive radio[C]. IEEE SoutheastCon 2010 Conference: Energizing Our Future, Charlotte-Concord, NC, United States, March 2010: 198-203.
  • 9Danijela C, Artem T, and Brodersen R W. Spectrum sensing measurements of pilot, energy, and collaborative detection[C]. Military Communications Conference 2006, Washington, D.C., United States, 2006: 1-7.
  • 10Lu Mingquan,电子科学学刊,1999年,16卷,3期,244页

共引文献89

同被引文献40

  • 1邢孟道.雷达信号处理基础[M].北京:电子工业出版社,2008.
  • 2郝祖全.弹载星载应用雷达有效载荷[M].北京:航空工业出版社,2004.80-102.
  • 3张贤达 保铮.非平稳信号处理[M].北京:国防工业出版社,1998..
  • 4黄槐,齐润东,文树梁.制导雷达技术[M].北京:电子工业出版社,2004.
  • 5Roger J Sullivan.成像与先进雷达技术基础[M].北京:电子工业出版社,2009.
  • 6AXELL E, LEUS G, LARSSON E G. Overview of Spec- trum Sensing tor Cognitive Radio[ C ]// 2010 2nd Inter- national Workshop on Cognitive Information Processing (CIP). [s. 1.]: IEEE, 2010: 322-327.
  • 7AXELL E, LEUS G, LARSSON E G, et al. Spectrum Sensing for Cognitive Radio : State- of- the- art and Re- cent Advances [ J ]. IEEE Signal Processing Magazine, 2012, 29(03) : 101-116.
  • 8ItUANG G, TUGNAIT J K. On Cyclostationarity Based Spectrum Sensing Under Uncertain Gaussian Noise [ J ]. IEEE Transactions on Signal Pr~rcessing, 2013,61 (08) : 2042 -2054.
  • 9ATAPA33"U S, TELLAMBURA C, JIANG H. Energy Deteetion Based Cooperative Spectrum Sensing in Cogni- tive Radio Networks [ J ]. Wireless Communications, IEEE Transactions on, 2011, 10(04): 1232-1241.
  • 10CHEN X, CHEN H, CHEN Y. Spectrum Sensing for Cognitive Uhra-wideband Based on Fractal Dimensions [ C]// 2011 Fourth International Workshop on Chaos- Fractals Theories and Applications (IWCFA). [ s. 1.] : IEEE, 2011: 363-367.

引证文献5

二级引证文献5

;
使用帮助 返回顶部