期刊文献+

基于局部相位多项式逼近的脉内无意调频估计

Instantaneous Frequency Estimation Based on Local Polynomial Approximation of Phase
下载PDF
导出
摘要 针对电子侦察中所遇到的脉内无意调频(Unintentional Frequency Modulation on Pulse,UFMOP)估计问题,提出了一种基于相位局部多项式逼近(Local Polynomial Approximation of Phase,LPAP)的瞬时频率估计方法。该方法利用时间窗,通过对窗内信号的相位进行局部多项式逼近来估计该窗中心时刻的瞬时频率。为确保LPAP法的有效性,所确定的时间窗长度须尽可能实现估计偏差和方差的折中。本文在比较分析置信区间交集(Intersectionof Confidence Intervals,ICI)与范-吉布斯带宽选择(Fan and Gijbels’s Bandwidth Selection,FGBS)两种经典窗长选择算法的基础上,选择更适于无意调频估计的FGBS算法用于LPAP法进行自适应窗长选择。仿真与实测数据分析实验表明本文方法对脉内无意调频的估计性能优于其他算法,同时也验证了有关窗长选择算法的分析结论。 The problem of estimating unintentional frequency modulation on pulse (UFMOP) which is frequently con- fronted in electronic ce is considered. A new instantaneous frequency method based on local polynomial approx- imation of phase (LPAP) is proposed. This method utilizes a sliding time window and estimates the instantaneous frequency of the central time of the analysis window, through approximating the phases of signal samples within the window locally. The approximation process is realized by using polynomial function. To ensure the efficiency of the proposed method, the se- lected window length should enable a bias-variance tradeoff as good as possible. In this paper, we compare the classical in- tersection of confidence intervals (ICI) and the Fan and Gijbels' s bandwidth selection (FGBS) window length selection al- gorithms. Based on the comparison, we recommend adopting the FGBS, which is found to be more suitable for UFMOP esti- mation, to select the window length adaptively for the LPAP. Simulations and real data analysis show that our method out- performs other commonly used instantaneous frequency estimation methods, and verify the conclusion derived from the com- parison of window-length-selection algorithms.
出处 《信号处理》 CSCD 北大核心 2012年第8期1090-1100,共11页 Journal of Signal Processing
关键词 特定辐射源识别 脉内无意调频 瞬时频率 局部多项式逼近 窗长选择 specific emitter identification unintentional frequency modulation on pulse instantaneous frequency local polynomial approximation window-length-selection
  • 相关文献

参考文献22

  • 1柳征,姜文利,周一宇.基于小波包变换的辐射源信号识别[J].信号处理,2005,21(5):460-464. 被引量:34
  • 2Wiley R G. ELINT:The interception and analysis of radar signals [ M ]. Norwood : Artech House, 2006.
  • 3Rune S, Leiv O. Emitter Identification Methods In An ESM-Demonstrator[ R ]. FFI/RAPPORT-2002/O0555, No- rwegian Defense Research Establishment,2002.
  • 4Langley L E. Specific emitter identification (SEI) and classical parameter fusion technology [ C ] , Proc. IEEE WESCON, San Francisco, 1993, pp. 28-30.
  • 5Oshea P, Wiltshire R A. A New Class of Multilinear Func- tions for Polynomial Phase Signal Analysis [ J ]. IEEE Trans. on Signal Process. 2009,57(6) :2096-2109.
  • 6Katkovnik V, Stankovic L J. Periodogram with varing and data-driven window length [ J ]. Signal Processing. 1998, 67 ( 3 ) : 345-358.
  • 7Katkovnik V, Stankovlc L. Instantaneous Frequency Esti- mation Using the Wigner Distribution with Varying and Data-Driven Window Length[ J]. IEEE Transacs. on Sig- nal Process. 1998,46 ( 9 ) : 2315-2325.
  • 8Barkat B. Instantaneous Frequency Estimation of Nonlin- ear Frequency-Modulated Signals in the Presence of Mul- tiplicative and Additive Noise[ J]. IEEE Transactions On Signal Processing. 2001,49(10) :2214-2222.
  • 9Lerga J, Sucic V. Nonlinear IF Estimation Based on the Pseudo WVD Adapted Using the Improved Sliding Pair- wise ICI Rule[J]. IEEE Signal Processing Letters. 2009, 16( 11 ) :953-956.
  • 10Goldenshluger A, Nemirovski A. On spatial adaptive esti- mation of nonparametric regression [J]. Math. meth. Stat. 1997,6(2) : 135-170.

二级参考文献8

  • 1StephaneG Mallat(法) 杨力华译.《信号处理的小波导引》[M].机械工业出版社,2002..
  • 2Lcohen(美) 白居宪(译).《时频分析:理论与应用》[M].西安交通大学出版社,1998..
  • 3R.R.Coifman and M.V.Wickerhauser, Entropy-based algorithms for best basis selection, IEEE. Trans. Info.Theory, Vol.38, No.2, pp.713-718, March 1992.
  • 4Satio,N., Local Feature Extraction and its Applications using a Library of Bases, Ph.D. Thesis, Dept. of Mathemafics, Yale University, New Haven, CT USA, December,1994.
  • 5N. Saito, R.Coifman, Local discriminant bases, in:A.ELaine, M.A. Unser(Eds.), Mathematical Imaging:Wavelet Applications in Signal and Image Processing Ⅱ,Proc. SPIE, Vol.2303, pp.2-14, 1994.
  • 6M. Basseville, "Distance measures for signal processing and pattern recognition", Signal Processing, vol.8, no.4,pp.349-369, 1989.
  • 7WaveLab version 0.800, Stanford Univ., 1999, http://www-stat.stanford.edu/-wavelab.
  • 8穆世强.雷达信号细微特性分析[J].电子对抗,1992(1):1-11. 被引量:7

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部