期刊文献+

求解稀疏最小二乘问题的新型Bregman迭代正则化算法 被引量:4

A New Bregman Iterative Regularization Algorithm for Sparse Least Squares Problems
下载PDF
导出
摘要 由于允许从少量数据中恢复原始图像或信号的压缩感知原理的引入,基于l1范数正则化的最优化方法近来越来越受到重视。利用最小二乘问题的一种等价形式和Bregman迭代方法的一些技巧,本文给出了已有A+线性Bregman迭代方法的一种推导过程。进一步结合不动点连续迭代方法和非满值最小二乘问题的等价形式,获得了一种求解带有约束的l1范数最小优化问题的新型算法,并给出了新型算法与A+线性Bregman迭代算法之间的联系,同时证明了新算法所获得的解是所求问题的一个最优解。新算法与已有A+算法类似,仅仅需要矩阵向量乘法和压缩算子的计算,从而使得新算法很容易实现,且运算速度明显快于已有算法。最后,通过数值实验表明,新方法对于稀疏信号的恢复问题与原方法相比具有速度快、可有效减少停滞现象等优点。 The class of t1 norm regularization problems has received much attention recently because of the introduction of "compressed sensing" which allows images and signals to be reconstructed from small amounts of data. With an equivalent form of least squares problem and some techniques of Bregman iterative methods, we give out a derivation of A+ linear Breg- man iteration method that has already existed. Furthermore, combining with the continuous fixed-point iteration method and the new form of the non-surjective least square problem, a new method for solving the constrained l1 norm optimization prob- lem is obtained. Simultaneously, the relationship between the A+ linear Bregman iteration and the new iterative method is given. The solution obtained by the new method is proved to be the optimal solution of the constrained l1 norm optimization problem that we considered. Similar to A+ linear Bregman iteration method that has exists, the new method needs only matrix-vector operation and shrinkage operator that is easy to implement in our considered problems. Finally, numerical results show that, for sparse signal recovery problem, the new method is faster, efficient and simple than A+ Bregman iterative methods that have been existed. At the same time, the new method reduced the stagnation of iterative procedure.
出处 《信号处理》 CSCD 北大核心 2012年第8期1164-1170,共7页 Journal of Signal Processing
基金 国家自然科学基金(60971132 11101431 61101208) 中央高校基本科研业务费专项基金(09CX04004A) 中国石油大学(华东)研究生创新基金(CXY11-16)
关键词 最小二乘问题 Bregman迭代正则化 Moore—Penrose逆 正交投影 Least squares problem Bregman iterative regularization Moore-Penrose inverse Orthogonal projection
  • 相关文献

参考文献11

  • 1Chen S. S. , Donoho D. L. , et al. Atomic decomposition by basis pursuit [ J ]. SIAM J. Sci. Comput, 1998, 20: 33-61.
  • 2Candes E. , Romberg J. and Tao T.. Robust uncertainty principles:exact signal reconstruction from highly incom- plete frequency information [J] . IEEE Trans. Inform. Theory, 2006,52 : 489 -509.
  • 3Donoho D. L.. Compressed Sensing [ J]. IEEE Trans. Inform. Theory ,2006,52 : 1289-1306.
  • 4Hale E. ,Yin W. and Zhang Y.. A Fixed-Point Continua- tion Method for LI-Regularization with Application to Compressed Sensing [ R ]. CAAM Technical report tr07- 07, Rice University, Houston,TX,2007.
  • 5Yin W. ,Osher S. ,et al. Bregman iterative 'algorithms for l-Regularization with Application to Compressed Sensing J]. SIAM J. Imaging Sciences,2008,1:143-168.
  • 6Cai J. F. , Chan R. H. , et al. Linearizad Bregman itera- tions for compresses sensing [ J ]. Math. Comp. , 2009,78 (267) :1515-1536.
  • 7Cai J. F. , Osher S. , et al. Linearized Bregman Iteration for Frame-Based Image Deblurring [ J ]. SIAM J. Imaging Sciences ,2009,2( 1 ) :226-252.
  • 8张慧,成礼智.A^-线性Bregman迭代算法[J].计算数学,2010,32(1):97-104. 被引量:14
  • 9Ben-Israel A. and Greville T. N. E.. Generalized inverses: Theory and Applications (M). 2nd ed. New York, NY: Springer,2003:35-130.
  • 10Osher S. , Mao Y. , et al. Fast Linearized Bregman Itera- tion for Compressed Sensing and Sparse Denoising [ R ]. Report 08-37, UCEA : CAM ,2008 : 1-18.

二级参考文献14

  • 1Donoho D L. Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52: 1289- 1306.
  • 2Candes E, Romberg J and Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006, 52: 489-509.
  • 3Chen S S, Donoho D L and Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM J. Sci. Comput., 1998, 20:33-61.
  • 4Hale E, Yin W and Zhang Y. A Fixed-Point Continuation Method for l1-Regularization with Applicatioin to Compressed Sensing[R].CAAM Technical report TR07-07, Rice Univercity, Houston, TX, 2007.
  • 5Yin W, Osher S, Goldfarb D, and Darbon J. Bregman iterative algorithms for l1-Regularization with Applicatioin to Compressed Sensing[J]. SIAM J. Imaging Sic., 2008, 1:143-168.
  • 6Cai J F, Chan R H and Shen Z. Linearized Bregman iterations for compressed sensing[J]. Math, Comp., to appear, 2008.
  • 7UCLA CAM Report(08-06). Math. Comp., 2009, 78(267): 1515-1536.
  • 8Cai J F, Chan R H and Shen Z. Convergence of the Linearized Bregman iterations for l1-Norm Minimization[R]. 2008.
  • 9UCLA CAM Report(08-52). Math. Comp., 2009, 78(268): 2127-2136.
  • 10Osher S, Mao Y, B Dong and W.Yin. Fast Linearized Bregman Iteration for Compressed Sensing and Sparse Denoisng[R]. 2008, UCLA CAM Report(08-37).

共引文献13

同被引文献12

  • 1王化祥,唐磊.基于TV正则化算法的电容层析成像自适应剖分方法[J].电子测量技术,2006,29(5):8-11. 被引量:8
  • 2D. L. Donoho. Denoiding by soft-thresholding[J]. IEEE Trans. Inform. Theory, 1995, 3:613-627.
  • 3Darbon, S. Osher. Fast discrete optimization for sparse approximations and deconvolutions [ J ]. Preprint, UCLA, 2007.
  • 4S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization method for variation - based image restoration[J]. Muitiscale Model. Simul,2005, 4(2) : 460 -489.
  • 5W. Yin, S. Osher, D. Goldfarb and J. Darbon. Bregman iterative algorithms for 11 - minimization with applica- tions to compressed sensing[J]. SIAM J. Imaging Sci, 2008, 1 (1) : 143 - 168.
  • 6J.F. Cai, S. Osher, and Z. Shen. Linearized Bregman iterations for compressed sensing [ J ], Math. Comp, 2009, 78:1515-1536.
  • 7C.R. Vogel and M.E. Oman. Iterative methods for total variation denoising. SIAM J. Sci. Comput, 1996, 17 (1) : 227 -238.
  • 8Gene H. Golub, Charles F. Van Loan. Matrix Computations [ M ]. Beijing: Posts & Telecom Press, 2009 : 88 - 140.
  • 9S. Osher, Y. Mao, B. Dong, and W. Yin. Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci, 2010, 8 ( 1 ) : 93 - 111.
  • 10张弦,王宏力.基于贯序正则极端学习机的时间序列预测及其应用[J].航空学报,2011,32(7):1302-1308. 被引量:24

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部