期刊文献+

基于Lame方程研究非线性Schrdinger方程的行波解

Traveling wave solution of nonlinear Schrdinger equation from the perspective of Lame equation
下载PDF
导出
摘要 从Lame方程显示解的角度,研究非线性Schrdinger方程,利用微扰展开法得到了非线性Schrdinger方程的几类行波解,并对其解进行分析. Nonlinear Schrodinger equation is studied from the perspective of Lame equation with explicit solution. Several forms traveling wave solutions of nonlinear Schrodinger equation are derived with the help of the perturbation method.
作者 相春环
出处 《重庆文理学院学报(自然科学版)》 2012年第4期8-10,共3页 Journal of Chongqing University of Arts and Sciences
基金 重庆市教委项目(KJ121206) 重庆文理学院教学改革与研究项目(100239)
关键词 Lame方程 非线性Schrdinger方程 微扰展开法 行波解 Lame equation nonlinear Schrodinger equation the perturbation method traveling wave solutions
  • 相关文献

参考文献12

  • 1许斌,刘希强.(2+1)维Gardner方程的对称、约化及其群不变解[J].量子电子学报,2009,26(5):531-536. 被引量:9
  • 2套格图桑,斯仁道尔吉.sine-Gordon型方程的Jacobi椭圆函数精确解[J].量子电子学报,2009,26(3):278-287. 被引量:18
  • 3Zhu Jiamin, Ma Zhengyi. Exact solutions for the cubic - quintic nonlinear Schrodinger equation [ J ]. Chaos, Solitons & Fractats, 2007,33 (3) : 958 - 964.
  • 4Dodd R J. Approximate solutions of the nonlinear Schrfi dinger equation for ground and excited states of Bose - Einstein condensates[ J ]. Journal of Research of the Na- tional Institute of Standards and Technology, 1996,101 : 545.
  • 5Xue Jukui, Zhang Aixia, Liu Jie. Self- trapping of Bose -Einstein condensates in an optical lattice: the effect of the system dimension [ J ]. Physical Review A, 2008, 77:013602 -4.
  • 6Frits Beukers, Alexa van der Waall. Lame equations with algebraic solutions [ J ]. Journal of Differential Equations ,2004,197 : 1 - 25.
  • 7Baldassarri F. On algebraic solutions of Lames differenti- al equation[ J]. Journal of Differential Equations, 1981, 41:44 -58.
  • 8Liu Guanting. Lame equation and asymptotic higher - order periodic solutions to nonlinear evolution equations [ J ]. Applied Mathematics and Computation, 2009, 212:312 -317.
  • 9Churchill R C. Two- generator subgroups of SL(2, C) and the hypergeometric, Riemann, and Lame equations [ J ]. Journal of symbolic Computation, 1999, 28 : 521 - 545.
  • 10Fu Zuntao, Mao Jun, Liu Shida. Multi - order exact solutions to the Drinfeld - Sokolov - Wilson equations [ J]. Physics Letters A,2009,373:3710 - 3714.

二级参考文献19

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部