期刊文献+

纳米LaFeO_3-TiO_2光催化还原CO_2 被引量:2

Photocataltic reduction of CO_2 by nanometer LaFeO_3-TiO_2
下载PDF
导出
摘要 采用柠檬酸络合-溶胶-凝胶法制备LaFeO3-TiO2纳米催化剂,并用TG-DTA、FT-IR、UV-Vis、XRD对其表征,研究煅烧温度、LaFeO3复合量对光催化催化还原CO2制甲醇性能影响及反应优化条件。结果表明,LaFeO3与TiO2的复合可以抑制TiO2的晶相转变,拓宽催化剂光响应范围,提高光催化性能。优化条件为:催化剂煅烧温度为800℃,复合质量分数为3%的LaFeO3,催化剂用量为2.0g/L,反应时间为7h,CO2流量为200mL/min,反应温度为90℃,反应液中NaOH和Na2SO3的浓度均为0.10mol/L,甲醇的产率达325.49μmol/g。并初步探讨了LaFeO3-TiO2光催化还原CO2机理。 LaFeO3-TiO2 nanocatalyst was prepared by a citric-sol-gel method. The catalyst was characterized by TG- DTA, FTIR,UV--Vis and XRD technology. The effect of calcining temperature, LaFeO3 compounding quantity and reac- tion optimization conditions on the activity of photocatalytic reduction of CO2 to methanol were studied. It showed that in- corporation of LaFeO3 could effectively inhibit phase transformation from anatase phase to rutile and broaden the catalyst light-response range, thereby improving the photocatalytic performance. Catalyst was calcined at 800℃, the composite quali- ty score of LaFeO3 was 3 % , the amount of catalyst was 2.0g/L , the reaction time was 7h, CO2 flow 200mL/min, the reac- tion temperature was 90℃, the concentration of NaOH and Na2SO3 were 0. 10mol/L, yield of methanol reached 325. 49μmol/g. Mechanism of CO2 photocatalytic reduction on LaFeO3-TiO2 catalyst was proposed.
出处 《化工新型材料》 CAS CSCD 北大核心 2012年第9期110-112,共3页 New Chemical Materials
基金 安徽省教育厅自然科学基金资助项目(2005kj118) 安徽省教育厅自然科学基金资助项目(KJ2009A121)
关键词 二氧化钛 LaFeO3-TiO2 光催化 二氧化碳还原 甲醇 titanium dioxide, LaFeO3-TiO2, photocatalytic reduction of CO2, methanol
  • 相关文献

参考文献15

二级参考文献42

共引文献105

同被引文献43

  • 1Shaohua Zhang,Bing Xie,Fengyi Li,Peng Xu.Preparation of Nano-Sized TiO_2 Particles by Microemulsion Method[J].稀有金属材料与工程,2006,35(A03):575-577. 被引量:1
  • 2Xu H,Ouyang S,Li P, et al. [J]. ACS Appl Mater Interfaces, 2013,5(4) : 1348-1354.
  • 3Ohno T, Higo T, Murakamin, et al. [J]. Applied Catalysis B: Environmental, 2014,152/153 : 309-316.
  • 4Vijayan B,Dimitrijevic N M,Rajh T,et al. [J]. J Phys Chem C, 2010,114(30) : 12994-13002.
  • 5Yui T,Kan A,Saitoh C,et al. [J]. ACS Appl Mater Interfaces, 2011,3(7) :2594-2600.
  • 6Xiong Z,Zhao Y, Zhang J, et al. [J]. Fuel Processing Technolo- gy, 2015,135:6-13.
  • 7Jiao J, Wei Y, Zhao Z, et al. [J]. Catalysis Today, 2015,258.. 319-326.
  • 8Zhang Q,Li Y,Ackerman E A,et al. [J]. Applied Catalysis A~ General, 2011,400(1) : 195-202.
  • 9Zhang Z, Huang Z,Cheng X,et al. [J]. Applied Surface Science, 2015,355:45-51.
  • 10Tan L L, Ong W J, Chai S P, et al. [J]. Chemical Engineering Journal, 2016,283 .. 1254-1263.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部