期刊文献+

车轮滚动接触疲劳与磨耗耦合关系数值模拟 被引量:4

Simulation of Coupling Relationship between Wheel Rolling Contact Fatigue and Wear
下载PDF
导出
摘要 滚动接触疲劳和磨耗是车轮失效的主要方式。通过三维弹性体非赫兹滚动接触理论得到接触斑内的法向、切向应力和材料上不同深度处的最大切应力分布,以CL60钢和贝氏体车轮钢为例,基于'layer'滚动接触疲劳失效模型和Zobory车轮磨耗模型,分析LM型车轮踏面和75 kg.m–1钢轨型面匹配时轮轨接触条件和车轮材质对车轮滚动接触疲劳和磨耗竞争关系的影响。计算结果表明,摩擦因数为0.3时,CL60钢在小蠕滑条件下会发生滚动接触疲劳损伤,在大蠕滑条件下只有轴重大于30 t时才会出现滚动接触疲劳损伤,而贝氏体车轮钢只有在大蠕滑条件且轴重为30 t时,载荷循环次数小于1×105的情况下才会出现滚动接触疲劳损伤;摩擦因数为0.6时,CL60钢和贝氏体车轮钢在各种工况下的滚动接触疲劳损伤速度都小于相同条件下的磨耗速度。 Rolling contact fatigue and wear are the main modes of wheel failure. The normal and tangential stresses at contact patch and the maximum shear stresses at different depths of material are calculated according to three dimensional elastic bodies non-hertzian rolling contact theory. In the case of CL60 and bainete steel, LM wheel profile and 75 kg · m-1 rail profile are matched, the effects of wheel/rail contact conditions and wheel materials on competition relationship between rolling contact fatigue and wear is analyzed based on "layer" rolling contact fatigue model and Zobory wheel wear model. The results indicate that, when the friction coefficient is 0.3, the rolling contact fatigue damage occurs in CL60 steel under low creepage condition, while under high creep condition the damage only occurs when axleload is over 30 t; for bainite steel, only under high creep condition and when axleload is 30 t, the damage occurs before the number of load cycles reaches 1×10^5; when the friction coefficient is 0.6, there is almost no contact fatigue damage in CL60 and bainite steel under all conditions, because the rates of wear are always higher than the contact fatigue damage.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第16期86-90,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金(50821063) 中央高校基本科研业务费专项资金(SWJTU12CX041)资助项目
关键词 车轮 滚动接触疲劳 磨耗 蠕滑 摩擦因数 Wheel Rolling contact fatigue Wear Creep Friction coefficient
  • 相关文献

参考文献17

  • 1BOLD P E, BROWN M W, ALLEN R J. Shear mode crack growth and rolling contact fatigue[J]. Wear, 1991, 144 (1-2).. 307-317.
  • 2TYFOUR W R, BEYNON J H, KAPOOR A. The steady state wear behaviour of pearlitic rail steel under dry rolling-sliding contact conditions[J]. Wear, 1995, 180(1-2): 79-89.
  • 3TYFOUR W R, BEYNON J H, KAPOOR A. Deterioration of rolling contact fatigue life of pearlitic rail steel due to dry-wet rolling-sliding line contact [J]. Wear, 1996, 197(1-2): 255-265.
  • 4KAPOOR A, FRANKLIN F J. Tribological layers and the wear of ductile materials[J]. Wear, 2000, 245(1-2). 204-215.
  • 5R1NGSBERG J W, LOO-MORREY M, JOSEFSON B L, et al. Prediction of fatigue crack initiation for rolling contact fatigue[J]. International Journal of Fatigue, 2000, 22(3): 205-215.
  • 6FRANKLIN F J, WIDIYARTA I, KAPOOR A. Computer simulation of wear and rolling contact fatigue[J]. Wear, 2001, 251(2): 949-955.
  • 7FRANKLIN F J, CHUNG T, KAPOOR A. Ratcheting and fatigue-led wear in rail-wheel contact[J]. Fatigue & Fracture Engmat. & Struct., 2003, 26(10): 949-955.
  • 8FRANKLIN F J, KAPOOR A. Modelling wear and crack initiation in rails[J]// Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2007, 221(Suppl.).. 23-33.
  • 9BURSTOW M C. Whole life rail model application and development for RSSB-development of an RCF damage parameter [R]. London: Rail Safety & Standards Boards, 2003.
  • 10BURSTOW M C. Whole life rail model application and development for RSSB-continued development of an RCF damage[R]. London: Rail Safety & Standards Boards, 2004.

二级参考文献26

共引文献42

同被引文献61

引证文献4

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部