期刊文献+

圆柱形谐振管内非线性驻波的有限体积计算方法 被引量:5

Finite Volume Algorithm for Nonlinear Standing Waves in Cylindrical Acoustic Resonators
下载PDF
导出
摘要 提出一种用于求解圆柱形谐振管内非线性驻波的有限体积计算方法。谐振管内初始为自由状态的流体被整体谐振激励,当激励频率与谐振管内声场固有频率一致时,谐振管内将产生非线性驻波。建立整体振动条件下谐振管内瞬态可压缩热粘性牛顿流体的一维Navier-Stokes模型方程的积分方程;在时域上,通过SIMPLEC方法(以压力为基础的有限体积法)和交错网格技术推导出离散化代数方程组,并进行求解。当谐振管内的流体为R-12气体,在整体振动的条件下,利用提出的方法对谐振管内的非线性驻波进行求解,通过与现有文献中伽辽金方法的计算结果进行对比,所得到的非线性驻波声压在波形和幅值方面都与这些结果非常吻合,从而验证了该方法的可行性。得到谐振管左端处的绝对压力波形、温度波形和声压频谱响应等物理特性分布;同时得到谐振管内不同位置处的速度变化,发现在谐振管两端出现了速度钉状波形;有限体积计算方法为解决强声密封的非线性驻波的数值计算奠定了良好基础。 A finite volume algorithm for solving nonlinear standing waves in cylindrical acoustic resonator is presented. The fluid is initially at rest and excited by the harmonic motion at the entire resonator, when excitation frequency is in accord with natural frequency of acoustic field in the resonator, nonlinear standing acoustic waves can be generated. The final discretized equations are built based on SIMPLEC scheme that is one pressure based finite volume method and a staggered grid manner in the time domain by integrating the one-dimensional Navier-Stokes model equations for an unsteady compressible thermoviscous Newtonian fluid. The cylindrical resonator excited by harmonic motion is filled'with R-12. The nonlinear standing waves in resonators are solved with the finite volume algorithm. The numerical simulation results are excellent agreement with the Galerkin method. So the feasibility of this method is verified. The physical properties, including The absolute pressure wave, temperature wave and a frequency pressure spectrum et al, are displayed. Meanwhile, the velocity waves in the different positions in resonator are obtained. It is shown that the sharp velocity spikes appear at the two ends of the cylindrical resonator. The Numerical Algorithm will provide a solid foundation tbr solving nonlinear standing waves for the macrosonic seal.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第16期116-121,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(51075329) 国家留学基金委青年骨干教师出国研修 西北工业大学基础研究基金(NPU-FFR-JC200932) 西北工业大学研究生创业种子基金(Z2011077)资助项目
关键词 谐振管 非线性驻波 有限体积法 强声密封 Resonator Nonlinear standing wave Finite volume algorithm Macrosonic seal
  • 相关文献

参考文献9

  • 1IL1NSKII Y A, LIPKENS B, LUCAS T S, et al. Nonlinear standing waves in an acoustical resonator [J]. Journal of the Acoustic Society of America, 1998, 104(5): 2664-2674.
  • 2LAWRENSON C C, LIPKENS B, LUCAS T S, et al. Measurements of macrosonic standing waves in oscillating closed cavities[J]. Journal of the Acoustic Society of America, 1998, 104(2): 623-636.
  • 3LI X F, FINKBEINER J, RAMAN et al. Optimized shapes of oscillating resonators for generating high-amplitude pressure waves[J]. Journal of the Acoustic Society of America, 2004, 116(5): 2814-2821.
  • 4ERICKSON R R, ZINN B T. Modeling of finite amplitude acoustic waves in closed cavities using the Galerkin method[J]. Journal of the Acoustic Society of America, 2003, 113(4): 1863-1870.
  • 5VANHILLE C, CAMPOS-POZEULO C. A high-order finite-difference algorithm for the analysis of standing acoustic waves of finite but moderate amplitude [J]. Journal of Computational Physics, 2000, 165: 334-353.
  • 6VANHILLE C, CAMPOS-POZEULO C. Numerical simulation of two-dimensional nonlinear standing acoustic waves[J]. Journal of the Acoustic Society of America, 2004, 116(1): 194-200.
  • 7CHUN Y D, KIM Y H. Numerical analysis for nonlinear resonant oscillations of gas in axisyrnrnetric closed tubes [J]. Journal of the Acoustic Society of America, 2000, 108(6): 2765-2774.
  • 8宁方立,王康.谐振管内非线性驻波的二维有限差分计算方法[J].机械工程学报,2011,47(18):173-178. 被引量:1
  • 9PATANKAR S V. Numerical heat transfer and fluid flow[M]. New York: McGraw-Hill, 1980.

二级参考文献10

  • 1VANHILLE C, CAMPOS-POZEULO C. Numerical simulation of two-dimensional nonlinear standing acoustic waves [J]. Journal of the Acoustic Society of America, 2004, 116(1): 194-200.
  • 2TEMKIN S. Elements of acoustics [M]. New York: Wiley, 1981.
  • 3LAWRENSON C C, LIPKENS B, LUCAS T S, et al. Measurements of macrosonic standing waves in oscillating closed cavities [J]. Journal of the Acoustic Society of America, 1998, 104(2): 623-636.
  • 4ILINSKII Y A, LIPKENS B, LUCAS T S, et al. Nonlinear standing waves in an acoustical resonator [J]. Journal of the Acoustic Society of America, 1998, 104(5): 2664-2674.
  • 5ILINSKII Y A, LIPKENS B, ZABOLOTSKAYA E A. Energy losses in an acoustical resonator [J]. Journal of the Acoustic Society of America, 2001, 109(5):1859-1870.
  • 6ERICKSON R R, ZINN B T. Modeling of finite amplitude acoustic waves in closed cavities using the Galerkin method [J]. Journal of the Acoustic Society of America, 2003, 113(4): 1863-1870.
  • 7LUO C, HUANG X Y, NGUYEN N T. Generation of shock-flee pressure waves in shaped resonators by boundary driving [J]. Journal of the Acoustic Society of America, 2007, 121(5). 2515-2521.
  • 8CHUN Y D, KIM Y H. Numerical analysis for nonlinear resonant oscillations of gas in axisymmetric closed tubes [J]. Journal of the Acoustic Society of America, 2000, 108(6): 2765-2774.
  • 9VANHILLE C, CAMPOS-POZEULO C. A high-order finite-difference algorithm for the analysis of standing acoustic waves of finite but moderate amplitude [J]. Journal of Computational Physics, 2000, 165: 334-353.
  • 10VANHILLE C, CAMPOS-POZEULO C. Numerical model for nonlinear standing waves and weak shocks in thermoviscous fluids [J]. Journal of the Acoustic Society of America, 2001, 109(6): 2660-2667.

同被引文献31

  • 1朱起东.管乐器发音的原理[J].音乐艺术(上海音乐学院学报),1984(2):93-95. 被引量:2
  • 2张辉,王佐卿,张淑仪.高次谐波体声波谐振器谐振频率分布研究[J].声学学报,2006,31(1):8-13. 被引量:3
  • 3CHUPP R E, GHASRIPOOR F, TURNQUIST N A, et al. Advanced seals for industrial applications: Dynamic seal development[J]. Journal of Propulsion and Power, 2002, 18(6): 1260-1266.
  • 4KANG Y, KIM T S, KANG S Y, et al. Aerodynamic performance of stepped labyrinth seals for gas turbine applications[R].ASME, GT2010-23256, 2010.
  • 5NEEF M, SULDA E, SUERKEN N, et al. Design features and performance details of brush seals for turbine applications[J].ASME, GT2006-90404, 2006.
  • 6NAKANE H , MAEKAWA A, AKITA E. The development of high-performance leaf seals[J]. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power, 2004, 126: 342-350.
  • 7WATANABE E, TANAKA Y, NAKANO T. Development of new high efficiency steam turbine[J]. Mitsubishi Heavy Industries, 2003, 40(4): 1-6.
  • 8GRONDAHL C. Pressure actuated leaf seal feasibility study and demonstration[R]. AIAA, 2009-5167, 2009.
  • 9INGO H J J, ANDREW K O, GERVAS F. Negative stiffness in gas turbine leaf seals[R]. ASME, GT2011-46483,2011.
  • 10OYAMA A, LIOU M S, OBAYASHI S. Transonic axial flow blade shape optimization using evolutionary algorithm and three-dimensional navier-stokes solver[R]. AIAA, 2002-5642, 2002.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部