期刊文献+

几何尺寸对矩形微通道液体流动和传热性能的影响 被引量:23

Effects of Geometry on Liquid Flow and Heat Transfer in Microchannels
下载PDF
导出
摘要 基于连续介质方法数值研究液体在不同几何结构微通道中的流动和传热性能。在相同热边界条件下,通过比较水力直径、通道长度和宽高比等几何参数对液体微流动的影响,得到各参数对泊肃叶数(Po)和努塞尔数(Nu)的影响关系。研究发现,截面宽高比越大,Po数越小,且雷诺数对泊肃叶数基本无影响;雷诺数(Re)小于500情况下,水力直径小于0.545 mm时,Po数随水力直径减小而减小,水力直径大于0.545 mm时,水力直径变化对Po数基本无影响;Po数不随通道长度变化而变化,但略受流动雷诺数影响;在Re=20~1 800时,Nu数正比于水力直径和宽高比,但是通道长度对Nu数的作用受流动Re数的影响;在通道材料和流动介质相同的条件下,Nu数和Re数之间的关系受通道几何参数的影响,并且拟合得到其关系式。 The geometric effects on the liquid flow are investigated in microchannel based on the numerical simulation method. Effects of geometry are shown obviously on the microflow by comparing the results of different geometric characteristics covered hydraulic diameter, length and aspect ratio. Thermal boundary conditions are same for different cases in the numerical simulation. The effects of geometric parameters on the Poiseuille number and the Nusselt number are investigated. The Poiseuille number decreases with the increasing of the aspect ratio while the Reynolds number has no effect on it for the same aspect ratio microchannels. For Re〈500, when the hydraulic diameter Dh〈0.545 ram, Po decreases with the Dh, but Po does not change when Dh is larger. The length of the microchannel has no effect on Po while Reynolds number has a little influence on it. When Re is 20-1 800, Nu is proportional to the hydraulic diameter and aspect ratio of the microcharmel. Effects of the length on the Nusselt number vary at different Reynolds number. The relation of Nu and Re can be fitted, which is affected by the geometry of microchannels for the same substrate and flow liquid.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第16期139-145,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(11002007 11002001)
关键词 微通道 传热 流动 几何结构 Microchannel Heat Transfer Flow Geometry
  • 相关文献

参考文献15

  • 1尹执中,胡桅林,过增元.微流动系统的发展概况[J].流体机械,2000,28(4):33-36. 被引量:24
  • 2CHEN Y P, ZHANG C B, SHI M H, et al. Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks[J]. International Communications in Heat and Mass Transfer, 2009(36): 917-920.
  • 3JOANICOT M, AJDARI A. Droplet control for microfluidics[J]. Science, 2005(309): 887-888.
  • 4HESSEL V, LOWE H, SCHONFELD F. Micromixers - A review on passive and active mixing principles[J]. Chemical Engineering Science, 2005(60): 2479- 2501.
  • 5HASAN M, RAGEB A, YAGHOUBI M, et al. Influence of channel geometry on the performance of a counter flow microchannel heat exchanger[J]. International Journal of Thermal Sciences, 2009(48): 1607-1618.
  • 6HOSSAIN S, ANSARI M, KIM K. Evaluation of the mixing performance of three passive micromixers[J]. Chemical Engineering Journal, 2009(150): 492-501.
  • 7AUBIN J, PRAT L, XUEREB C, et al. Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient[J]. Chemical Engineering and Processing, 2009(48): 554-559.
  • 8KOO J, KLEINSTREYER C. Liquid flow in microchannels : Experimental observations and computational analyses of microfluidics effects[J]. Journal of Micromechanics and Microengineering, 2003, 13.- 568-579.
  • 9刘赵淼,王国斌,申峰.基于Navier滑移的油膜缝隙微流动特性数值分析[J].机械工程学报,2011,47(21):104-110. 被引量:19
  • 10WU H Y, CHENG E An experimemal study of convective heat transfer in silicon microchannels with different surface conditions[J]. International Journal of Heat and Mass Transfer, 2003(46). 2547-2556.

二级参考文献33

  • 1尤学一,郑湘君,李丹.微尺度间距平行平板间的流动稳定性问题[J].中国机械工程,2005,16(z1):210-212. 被引量:4
  • 2吴承伟,胡令臣.界面滑移与油膜破裂[J].大连理工大学学报,1993,33(2):172-178. 被引量:10
  • 3BAIR S, MCCABE C A. A study of mechanical shear bands in liquids at high pressure[J]. Tribology International, 2004, 37(10): 783-789.
  • 4HUANG Ping, LUO Jianbin, WEN Shizhu. Theoretical study on the lubrication failure for the lubricants with a limiting shear stress[J]. Tribology International, 1999, 32(10): 421-426.
  • 5MA Guojun, WU Chengwei, ZHOU Ping. Multi-linearity algorithm for wall slip in two dimensional gap flow[J]. International Journal for Numerical Methods in Engin- eering, 2007, 69(12): 2469-2484.
  • 6WU Chengwei, MA Guojun, ZHOU Ping. Low friction and high load support capacity of slider bearing with a mixed slip surface[J]. Journal of Tribology, 2006, 128(4): 904-907.
  • 7WU Chengwei, ZHOU Ping, MA Guojun. Squeeze fluid film of spherical hydrophobic surface with wall slip[J]. TribologyInternational, 2006, 39: 863-872.
  • 8ASTERIOS E The cassical plane couette-poiseuille flowwith variable fluid properties[J]. Journal of Fluids Engineering, 2006, 128: 1115-1121.
  • 9CHIARA N, DEEW R E, ELMAR B, et al. Boundary slip in Newtonian liquids: A review of experimental studies[J]. Reports of Progress in Physics, 2005, 68. 2859-2897.
  • 10ERIC L, HOWARD A S. Effective slip in pressure-driven stokes flow[J]. J. Fluid Mech., 2003, 489- 55-77.

共引文献63

同被引文献165

引证文献23

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部