摘要
Epithelial-mesenchymal transition (EMT) is a process by which fully differentiated epithelial cells undergo a phenotypic conversion and assume a mesenchymal cell phenotype, including elongated morphology, enhanced migratory and invasiveness capacity, and greatly increased production of extracellular matrix (ECM) components. The EMTs associated with wound healing, tissue regeneration, and organ fibrosis are termed as type 2 EMT. Over the past two decades, emerging evidence suggested that injured epithelial cells, via type 2 EMT, may serve as important sources of fibroblasts and contribute to organ fibrosis, such as kidney, liver, lung and eyes. There is perhaps no doubt that adult epithelial cells can undergo EMT in vitro in response to transforming growth factor (TGF)-131 and other inflammatory or pro-fibrotic stimuli. However, whether type 2 EMT really occurs in vivo, whethers it is actually a source of functional and activated interstitial fibroblasts and whether it contributes to tissue fibrosis have already been the subjects of heated debate. In this review, we will describe the main features of EMT, the major findings of type 2 EMT in vitro, the evidences for and against type 2 EMT in vivo and discuss the heterogeneity and pitfalls of the techniques used to detect EMT during fibrotic diseases. We suggest that in order to ascertain the existence of type 2 EMT in vivo, different proper phenotype markers of epithelial and mesenchymal cells should be jointly used and cell lineage tracking techniques should be standardized and avoid false positives. Finally, we believe that if EMT really occurs and contributes to tissue fibrosis, efforts should be made to block or reverse EMT to attenuate fibrotic process.
Epithelial-mesenchymal transition (EMT) is a process by which fully differentiated epithelial cells undergo a phenotypic conversion and assume a mesenchymal cell phenotype, including elongated morphology, enhanced migratory and invasiveness capacity, and greatly increased production of extracellular matrix (ECM) components. The EMTs associated with wound healing, tissue regeneration, and organ fibrosis are termed as type 2 EMT. Over the past two decades, emerging evidence suggested that injured epithelial cells, via type 2 EMT, may serve as important sources of fibroblasts and contribute to organ fibrosis, such as kidney, liver, lung and eyes. There is perhaps no doubt that adult epithelial cells can undergo EMT in vitro in response to transforming growth factor (TGF)-131 and other inflammatory or pro-fibrotic stimuli. However, whether type 2 EMT really occurs in vivo, whethers it is actually a source of functional and activated interstitial fibroblasts and whether it contributes to tissue fibrosis have already been the subjects of heated debate. In this review, we will describe the main features of EMT, the major findings of type 2 EMT in vitro, the evidences for and against type 2 EMT in vivo and discuss the heterogeneity and pitfalls of the techniques used to detect EMT during fibrotic diseases. We suggest that in order to ascertain the existence of type 2 EMT in vivo, different proper phenotype markers of epithelial and mesenchymal cells should be jointly used and cell lineage tracking techniques should be standardized and avoid false positives. Finally, we believe that if EMT really occurs and contributes to tissue fibrosis, efforts should be made to block or reverse EMT to attenuate fibrotic process.
基金
This work was supported by grants from the National Natural Science Foundation of China (No. 30971312), Beijing Natural Science Foundation (No. 7102059) and the Key Project of Beijing Municipal Education Commission Sci-Tech Development Program (No. KZ201110025026),