期刊文献+

正交各向异性位势问题的Trefftz有限元法 被引量:6

Trefftz Finite Element Method for Orthotropic Potential Problems
下载PDF
导出
摘要 针对正交各向异性位势问题,提出了Trefftz有限元解法。通过坐标变换和拉普拉斯方程特征函数,求得正交各向异性问题的完备解系,进而构建单元域内位势场。然后,基于杂交泛函,结合单元网线位势场,系统推导了相应的Trefftz有限元列式。文末给出两个数值算例,使用四节点四边形单元OPT44建立有限元模型,计算结果验证了本文方法的有效性和准确性。 This paper presents the Trefftz finite element analysis of orthotropic potential problems. The complete set of homogeneous solutions to orthotropic potential problem, which is employed to construct intra-element potential field, has been obtained using coordinate transformation and eigenfunctions of La- place equation. In combination with element frame potential field, the corresponding Trefftz finite ele- ment formulation is systematically derived based on the hybrid functional. Finally, two numerical exam- ples, which are modeled using four-node quadrilateral elements OPT44, are investigated. And the results demonstrate the effectivity and accuracy of proposed approach.
出处 《力学季刊》 CSCD 北大核心 2012年第3期499-506,共8页 Chinese Quarterly of Mechanics
基金 上海高校选拔培养优秀青年教师科研专项基金(GJD10019) 上海市教委重点攻关项目(10ZZ124)
关键词 杂交泛函 位势问题 正交各向异性介质 Trefftz有限元法 hybrid functional potential problem orthotropic medium Trefftz finite element method
  • 相关文献

参考文献15

  • 1QIN Q H. The Trefftz Finite and Boundary Element Method[M]. Southampton & Boston: WIT Press, 2000.
  • 2PILTNER P. Special finite elements with holes and internal cracks[J]. International Journal for Numerical Methods in Engineering, 1985, 21(8): 1471 - 1485.
  • 3TONT P, PIAN T H H, LASRY S J. A hybrid-element approach to crack problems in plane elasticity[J].International Journal for Nu- merical Methods in Engineering, 1973, 7(3), 297- 308.
  • 4ZHANG J, KATSUBE N. A polygonal element approach to random heterogeneous media with rigid ellipses or elliptical voids[J].Comput- er Methods in Applied Mechanics Engineering. 1997, 148(3 - 4) : 225 - 234.
  • 5王克用.一种Trefftz孔洞单元及其在接触问题中的应用[J].力学季刊,2011,32(3):460-465. 被引量:3
  • 6SZYBIHSKI B, ZIELII)ISKI A P. Alternative T-complete systems of shape functions applied in analytical Trefftz finite elements[J]. Nu- merical Methods for Partial Differential Equations, 1995, 11(4) :375 - 388.
  • 7WANG H, QIN Q H, AROUNSAVAT D. Application of hybrid Trefftz finite element method to non-linear problems of minimal surface [J]. International Journal for Numerical Methods in Engineering, 2007, 69(6) : 1262 - 1277.
  • 8de FREITASA J A T, CISMASIU C. Adaptive prefinement of hybrid-Trefftz finite element solutions[J]. Finite Elements in Analysis and Design, 2003, 39(11): 1095- 1121.
  • 9Hui Wang,Qing-Hua Qin.HYBRID FEM WITH FUNDAMENTAL SOLUTIONS AS TRIAL FUNCTIONS FOR HEAT CONDUCTION SIMULATION[J].Acta Mechanica Solida Sinica,2009,22(5):487-498. 被引量:10
  • 10赵新娟,赵吉义.位势问题的杂交有限元算法研究[J].中原工学院学报,2011,22(1):59-61. 被引量:4

二级参考文献25

  • 1周焕林,牛忠荣,王秀喜,程长征.正交各向异性位势问题边界元法中几乎奇异积分的解析算法[J].应用力学学报,2005,22(2):193-197. 被引量:8
  • 2Wang Hui,Qin Qinghua.SOME PROBLEMS WITH THE METHOD OF FUNDAMENTAL SOLUTION USING RADIAL BASIS FUNCTIONS[J].Acta Mechanica Solida Sinica,2007,20(1):21-29. 被引量:9
  • 3Piltner P. Special finite elements with holes and internal cracks[J].Int J Numer Meth Engng, 1985, 21(8) : 1471 - 1485.
  • 4Zeng D, Kartsube N, Zhang J. A hybrid finite element method for fluid-filled porous materials~J]. Int J Numer Anal Meth Geomech, 1999, 23(13) : 1521 - 1534.
  • 5Zhang J, Katsube N. A polygonal element approach to random heterogeneous media with rigid ellipses or elliptical voids[J].Comp Meth Appl Mech Engrg, 1997, 148(3 - 4) : 225 - 234.
  • 6Lin K Y, Tong P. Singular finite elements for the fracture analysis of V-notched plate[J]. Int J Numer Meth Engng, 1980, 15(9):1343 - 1354.
  • 7Tong P, Pian T H H, Lasry S J. A hybrid-element approach to crack problems in plane elasticity[J].Int J Numer Meth Engng, 1973, 7 (3) : 297 - 308.
  • 8Zhang J. A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions[J]. Int J Numer Meth Engng, 1995,38(10) : 1635- 1653.
  • 9Zhang J, Katsube N. A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions[J]. Finite Elem Anal Des, 1995, 19(1) : 45- 55.
  • 10Jirousek J, Venkatesh A. Hybrid Trefftz plane elasticity elements with p-method capabilities[J].Int J Numer Meth Engng, 1992, 35(7) : 1443 - 1472.

共引文献16

同被引文献27

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部