期刊文献+

同质学术Web空间主题结构研究 被引量:1

Research on the Subject Structure in Homogenous Academic Web Space
下载PDF
导出
摘要 本研究在总结现有以共链分析和社会网络分析为主的学术网络局部结构识别方法的基础上,提出了改进的两步式K核分析方法,首次引入了复杂网络中的社区识别算法进行链接网络的分割,并尝试通过适用性评测验证快速聚类算法在同质Web链接网络的主题结构识别方面的有效性。最后的实验结果表明,本研究提出的改进K核分析方法可以有效地发现存在于链接网络中的主题聚类现象;同时研究中引入的快速聚类算法对以93所大学网站进行了聚类并获得六个主题类。通过聚类准确率指标计算,该聚类方法的平均准确率为72%。以上结论证实了本研究中采用的从链接关系度量.数据矩阵构建、到链接网络分析的方法体系是有效的。 In this study, sub-structure discovering methods for academic web based on co-link analysis and social network analysis were summarized, then a new improved two-step k-core method was proposed and an algorithm in complex network for community identification was introduced firstly to link network partition. We try to test the usability of the Fast Algorithm on finding subject-based communities within homogenous academic Web. The experimental result shows that the technique of two-step k-core is capable of discovering subject-communities in academic link network. The 93 university websites were clustered into six classes using the introduced Fast Algorithm and the average accuracy is 72%. Consequently, it can be concluded that a series of strategies applied in this study are workable, including measures on link strength, building of link matrix and methodological frame of link network analysis.
出处 《情报学报》 CSSCI 北大核心 2012年第9期900-906,共7页 Journal of the China Society for Scientific and Technical Information
基金 本研究受教育部人文社科基金项目《基于社区发现的Web主题图构建技术研究》(No.11YJC870030)、中央高校基本科研业务费专项南京农业大学青年科技创新基金项目《基于开放社区的Web主题图构建技术研究》(No.KJ2010021)和中央高校基本科研业务费专项四川大学《面向技术预见的科学技术关联研究》(No.skqy201102)资助.
关键词 链接分析 学术网络 社会网络 复杂网络 link analysis, academic Web, social network, complex network
  • 相关文献

参考文献23

  • 1Pennock D M, Flake G W, Lawrence S, et al. Winners don' t take all: Characterizing the competition for links on the web [ J ]. Proceedings of the National Academy of Sciences of the United States of America. USA, 2002,99 (8) :5207-5211.
  • 2Barab6si A L, Albert R. Emergence of scaling in random networks [ J ]. Science, 1999,286 ( 5439 ) : 509-512.
  • 3Aiello W, Chung F,Lu L. A random graph model for Power Law graphs [ J ]. Experimental Math, 2001, 10 ( 1 ) : 53 -66.
  • 4Ortega J L, Aguillo I F. Visualization of the Nordic Academic Web: Link Analysis Using Social Network Tools [ J ]. Information Processing and Management, 2008,44 (4) : 1624-1633.
  • 5Polanco X, Boudourides M A, Besagni D, et al. Clustering and mapping Web sites for displaying implicit associations and visualising networks [ R/OL] , University of patras, 2001. http://www, math. upatras, gr/- mboudour/artieles/Web _ clustering&mapp-ing, pdf. [ 2009-12-13 ].
  • 6Vaughan L,You J. Comparing business competition positi- ons based on web co-link data:the global market vs. the Chinese market [ J ]. Scientometrics, 2006, 68 ( 3 ) : 611-528.
  • 7Vaughan L. Visualizing linguistic and cultural differences using web co-link data [ J ]. Journal of the American Society for Information Science and Technology, 2006,57 (9) :1178-1193.
  • 8Thelwall M, Wilkinson D. Finding similar academic web sites with links, bibliometric couplings and colinks [ J ]. Information Processing and Management, 2004,40 ( 3 ) : 515-526.
  • 9Larson R. Bibliometrics of the World Wide Web: An exploratory analysis of the intellectual structure of Cyberspace [ G ]//Proceedings of ASIS96 Baltimore,Michigan : Published for the American Society for Information Science by Information Today, Inc, 1996: 71-78.
  • 10Lang P,Gouveia F C ,Leta J. Site co-link analysis applied to small networks:a new methodological approach [ J]. Scientometrics ,2010,83 ( 1 ) : 157-166.

二级参考文献1

共引文献27

同被引文献28

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部